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• David Köhler (MSc, UUlm)
• Florian Diemer (BSc, UUlm) [152]
• Johannes Diebold (BSc, UUlm)
• Christopher Keazor (Dipl, UUlm)
• Thai Chung (BSc, UUlm)
• Ala’a Al-Momani (MSc, UUlm & Princess Sumaya University for Technology, Jordan)
• Julian Schregle (BSc, UUlm)

The following students were part of Maat’s development in the form of student assistant jobs (which
were provided through the funding agencies listed below):

• Amir Hosh
• Yogita Suryawanshi
• Leo Hnatek
• Sergej Schmidt
• Johannes Diebold

I also had the pleasure of supervising a number of other students on various topics not directly related
to this thesis:

• Mahmoud Nabegh (BSc, GUC)
• Witali Hepting (MSc, UUlm + Daimler TSS)
• Manuel Gassner (BSc, UUlm + Daimler TSS)
• Dominik Meißner (BSc, UUlm)
• Michael Ortmann (MSc, UUlm)
• Lukas Müller (BSc, UUlm)
• Christoph Rothermel (BSc, UUlm)
• Martin Deubzer (BSc, UUlm)

i



• Florian Unterstein (MSc, UUlm)
• Stefan Rotter (BSc, UUlm)
• Christian Forst (BSc, UUlm + Secunet)
• Felix Engelmann (BSc, UUlm)

Generous funding was provided by a number of sources over the years:

• Volkswagen AG within the CONVERGE project1

• The European FP7 Project CRISALIS2
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of Science, Research and the Arts Baden-Württemberg and the Universities of the State of Baden-
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Abstract

Automobile accidents are one of the major causes of death in the Western world. In previous decades, au-
tomobile manufacturers and researchers have investigated a broad spectrum of solutions to this challenge.
Within this solution space, communication between vehicles has long been a promising direction that en-
ables highly advanced driver assistance systems. Current generation assistance systems operate through
the use of automotive sensors, which have limited range; to provide the vehicle with a more complete pic-
ture of its surroundings, various standards have been proposed to enable information exchange between
vehicles. Recent developments in this field, which integrate more components into this communication
architecture, give rise to cooperative intelligent transport systems (C-ITS). Most C-ITS applications, in
particular including safety applications, make decisions based on both information received from local
sensors and messages received from others.

One aspect of C-ITS that is essential for successful deployment is its security against invalid behavior
and malicious attacks. Without such protection, the validity of the information received from other
vehicles cannot be guaranteed, and thus the reliability of all C-ITS applications is affected. Research
has invested significant effort in the development of basic security services, such as pseudonymization
and sender authentication. One area that has received limited attention in standardization is that of
misbehavior by authentic entities in the network. For example, a malicious vehicle may transmit false
messages, triggering an emergency response and causing a collision between other vehicles. This cannot
be prevented through standard security services, such as cryptographic signatures, because a malicious
vehicle is an authentic sender. In general the detection of such invalid application data is termed misbe-
havior detection. Because different attacks are typically detected through different misbehavior detection
mechanisms, the combination of these outputs (i.e., fusion) for decision making is an essential compo-
nent. This thesis addresses this topic by designing Maat, a generic misbehavior detection framework
that ensures the validity of received data.

The contributions of this thesis include (a) a detailed survey of existing misbehavior detection mech-
anisms, (b) Maat, a proposal for a generic fusion framework for misbehavior detection in C-ITS, (c)
multi-source fusion operations for subjective logic, which forms the mathematical foundation of our
framework, (d) several novel detection mechanisms, (e) a detailed review of evaluation methodologies
and proposals for novel metrics, (f) a new, public dataset that serves as a baseline for comparison of
misbehavior detection mechanisms, (g) a detailed evaluation of the proposed mechanisms and fusion op-
erations, and (h) an outlook discussing how these results can be applied to other cyber-physical systems.

The survey in this thesis provides an overview and classification of existing misbehavior detection
mechanisms along various axes, including the scope of detection, type of data used and susceptibility to
attacks. Not only does this provide a solid foundation for the requirements on Maat, it also supports
the development of attacks and misbehavior detection mechanisms in the wider field.

Within this thesis, we build a framework, called Maat, to fuse misbehavior detection results through
subjective logic. Subjective logic is a mathematical framework that enables the expression of uncertainty
on data through objects called subjective opinions. Maat applies this logic to build a flexible data
management and fusion system, which determines the trustworthiness of data whenever it is accessed by
applications. To support this data management, Maat uses a directed graph to store the data and the
associated detection results. By recording both the data and the associated detection results separately,
a wide range of potential new detectors can be explored. In addition, it enables the verifiable exchange
of detection results for revocation.

Subjective logic provides a variety of fusion operators to fuse subjective opinions. However, for
some of these operators, fusion of multiple opinions (multi-source fusion) is not well-defined due to non-
commutativity. In order to implement Maat, these operators were generalized to the multi-source fusion
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setting: we provide this generalization for weighted belief fusion (WBF) and consensus & compromise
fusion (CCF). We also discuss how transitive trust relations can be applied within our framework.

Maat contains a set of new detection mechanisms that exploit properties of subjective logic to more
accurately model the detection results. We use these mechanisms to show that fusion can increase
detection performance compared to individual detection mechanisms.

As part of our survey of related work, we found that there are significant methodological differences
and evaluation criteria. In this thesis, we provide an overview of those differences, and propose a
new evaluation methodology that goes significantly beyond the rigor exhibited by existing work. This
methodology includes a set of application-centric metrics for cooperative adaptive cruise control, one of
the primary C-ITS applications, as well as metrics to assess overall detection performance in a widely
deployed system.

One issue we encountered in reproducing the work of others is the fact that there are no publicly
available benchmarks against which misbehavior detection mechanisms can be tested. In this thesis, we
present a public dataset that can serve as a baseline for such benchmarks.

Based on this new methodology and the presented dataset, we provide a detailed evaluation of
Maat’s features. This includes a study of detection performance by different detection mechanisms, a
comparison of fusion operations, and the analysis of weighing between detectors. We also revisit the
idea of exponential weighted averaging (EWA) of detection output to protect against accidental faults.
Our results show that Maat can provide an overall improvement in detection performance, while the
EWA reduces performance even when attacks are persistently executed. We attribute this failure of
EWA to the types of attacks executed in our experiments, whose detection depends on the spatial
relationship between attacker and observer. This evidence suggests that EWA is not suitable in these
specific scenarios.

In summary, this thesis studies the topic of misbehavior detection in cooperative intelligent transport
systems. Misbehavior detection exploits knowledge of physical processes to determine the trustworthiness
of data and entities in a cyber-physical system. Through our developed fusion framework for misbehavior
detection mechanisms, the safety and security of such systems can be improved significantly. Future
work in this field could includes the integration of misbehavior detection with sensor fusion processes
to validate sensor data and protect against attacks on such systems, as well as extensions that enable
reliable reporting and sharing of parts of Maat’s world model.
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Samenvatting

Autoongevallen zijn een van de belangrijkste doodsoorzaken in de westerse wereld. In de afgelopen de-
cennia hebben autofabrikanten en onderzoekers een breed spectrum aan oplossingen voor deze uitdaging
onderzocht. Binnen deze oplossingsruimte is de communicatie tussen voertuigen al lange tijd een veel-
belovende richting die geavanceerde bestuurdersassistentiesystemen mogelijk maakt. Om het voertuig
een vollediger beeld van zijn omgeving te geven, zijn verschillende normen voorgesteld om de uitwisseling
van informatie tussen voertuigen mogelijk te maken. Recente ontwikkelingen op dit gebied, waarbij meer
componenten in deze communicatiearchitectuur worden gëıntegreerd, leiden tot coöperatieve intelligente
vervoerssystemen (C-ITS). De meeste C-ITS-toepassingen, met name veiligheidstoepassingen, nemen
beslissingen op basis van zowel informatie van lokale sensoren als berichten van anderen.

Een aspect van C-ITS dat essentieel is voor een succesvolle implementatie is de beveiliging ervan
tegen ongeldig gedrag en kwaadwillige aanvallen. Zonder een dergelijke bescherming kan de geldigheid
van de van andere voertuigen ontvangenen informatie niet worden gegarandeerd, waardoor de betrouw-
baarheid van alle C-ITS-toepassingen wordt aangetast. In het onderzoek van de laatste jaren is veel
gëınvesteerd in de ontwikkeling van basisbeveiligingsdiensten, zoals pseudonimisering en authenticatie
van afzenders. Een gebied dat bij standaardisatie beperkte aandacht heeft gekregen, is dat van wangedrag
door autentische entiteiten in het netwerk. Een kwaadaardig voertuig kan bijvoorbeeld foute berichten
verzenden, waardoor een noodmaatregel in een auto wordt geactiveerd en een botsing tussen andere
voertuigen wordt veroorzaakt. Dit kan niet worden voorkomen door standaardveiligheidsdiensten, zoals
cryptografische handtekeningen, omdat een kwaadaardig voertuig een autentische afzender is. In het
algemeen wordt de detectie van dergelijke ongeldige applicatiegegevens aangeduid als misbehavior de-
tection. Omdat verschillende aanvallen doorgaans worden gedetecteerd door verschillende misbehavior
detection mechanismen, is de combinatie van deze uitgangen (d.w.z. fusie) voor de besluitvorming een
essentieel onderdeel. Dit proeschrift pakt dit onderwerp aan met de ontwikkeling van Maat, een generisch
framework voor het opsporen van wangedrag dat de validiteit van ontvangen gegevens waarborgt.

De bijdragen van deze dissertatie omvatten (a) een gedetailleerd overzicht van bestaande misbehav-
ior detection mechanismen, (b) Maat, een voorstel voor een generiek fusie-framework voor misbehavior
detection in C-ITS, (c) multi-source fusieoperaties voor subjective logic, die de wiskundige basis van ons
framework vormt, (d) verschillende nieuwe detectiemechanismen, e) een gedetailleerd overzicht van de
evaluatiemethodologieën en voorstellen voor nieuwe meetmethoden, f) een nieuwe, openbare dataset die
als basis dient voor de vergelijking van misbehavior detection mechanismen, g) een gedetailleerde evalu-
atie van de voorgestelde mechanismen en fusieoperaties, en h) een vooruitzicht waarin wordt besproken
hoe deze resultaten op andere cyberfysische systemen kunnen worden toegepast.

De literatuur-analyse in dit proefschrift biedt een overzicht en classificatie van bestaande detec-
tiemechanismen voor wangedrag langs verschillende assen, waaronder de reikwijdte van de detectie, het
type gegevens dat wordt gebruikt en de gevoeligheid voor aanvallen. Dit biedt niet alleen een solide basis
voor de eisen aan Maat, het ondersteunt ook de ontwikkeling van aanvallen en wangedrag detectiemech-
anismen in het bredere veld.

Dit proefschrift behandelt de ontwikkeling van een framework genaamd Maat dat de resultaten
van wangedragdetectie fuseert met subjective logic. In subjective logic wordt de onzekerheid in data
meegenomen door gebruik te maken van zogenaamde subjective opinions. Maat gebruikt deze logic om
een flexibel datamanagement en fusiesysteem te bouwen dat de betrouwbaarheid van data weergeeft als
applicaties er gebruik van maken. Ter ondersteuning van het fusiesysteem geeft Maat deze gegevens en de
bijbehorende resultaten van detectoren in een gerichte graaf weer. Het vastleggen van zowel de data als de
bijbehorende detectieresultaten maakt het mogelijk om een breed scala aan potentieel nieuwe detectoren
te onderzoeken. Bovendien kan men dan detectieresultaten controleerbaar uitwisselen, bijvoorbeeld ten
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behoeve van het intrekken van certificaten.
Subjective logic biedt een breed scala aan fusieoperatoren om subjective opinions te fuseren. Maar

voor sommige van deze operatoren is de fusie van meerdere opinions (multi-source fusion) niet een-
duidig gedefinieerd omdat ze niet commutatief zijn. Om Maat te kunnen implementeren werden deze
operatoren veralgemeniseerd naar een multi-source fusion setting: we vertaalden de generalisatie voor
de weighted belief fusion (WBF) de consensus & compromise fusion (CCF). We bespreken ook hoe
transitieve vertrouwensrelaties in ons framework kunnen worden toegepast.

Maat bevat een nieuwe set detectiemechanismen die gebruik maken van de eigenschappen van sub-
jective logic om de detectieresultaten beter te kunnen modelleren. We gebruiken deze mechanismen om
aan te tonen dat fusie de detectieprestaties kan verbeteren in vergelijking met individuele detectiemech-
anismen.

Tijdens ons onderzoek hebben we vastgesteld dat er aanzienlijke methodologische verschillen en eval-
uatiecriteria bestaan. In dit proefschrift geven we daarvan een overzicht en stellen we een nieuwe eval-
uatiemethode voor om de analyse van aanvallen te verbeteren tegenover de nu gebruikelijke methodes.
Deze methodologie omvat een reeks toepassingsgerichte metrieken voor cooperative adaptive cruise con-
trol, één van de primaire C-ITS-toepassingen, evenals metrieken om de algemene detectieprestaties bij
grootschalige toepassing te kunnen beoordelen. Verder presenteren we bij dit proefschrift een openbare
dataset die als basis kan dienen voor dit soort benchmarks.

Met behulp van deze methode en de dataset hebben we Maat tot in detail kunnen evalueren. Dat
omvat een studie naar de prestaties van verschillende detectiemechanismen, een vergelijking van de
fusieoperaties en een analyse van de weging van verschillende detectoren. We hebben ook het idee
onderzocht om toevallige fouten in detectoren te minimaliseren door gebruik te maken van exponential
weighted averaging (EWA). Uit onze resultaten blijkt dat, terwijl Maat kan zorgen voor een algemene
verbetering van de detectieprestaties, EWA die vermindert, zelfs wanneer aanvallen voortdurend worden
uitgevoerd. Wij denken dat het falen van EWA in onze experimenten toe te schrijven is aan het feit dat
de detectie afhankelijk is aan de ruimtelijke relatie tussen aanvaller en waarnemer. Dit wijst erop dat
EWA niet geschikt zijn voor deze specifieke scenario’s.

Samenvattend behandelt dit proefschrift het onderwerp misbehavior detection in coöperatieve intelli-
gente transportsystemen. Dat maakt gebruik van de kennis over fysieke processen om de betrouwbaarheid
van gegevens en entiteiten in een cyberfysiek systeem te bepalen. Met het door ons ontwikkelde fusion
framework voor misbehavior detection mechanismen kan de veiligheid van dergelijke systemen aanzien-
lijk worden verbeterd. Een toekomstige activiteit op dit gebied zou integratie van misbehavior detection
met sensorfusieprocessen kunnen zijn. Dat zou het mogelijk maken om sensorgegevens te valideren
om dergelijke systemen tegen aanvallen te beschermen. Ook zouden uitbreidingen die een betrouwbare
rapportage en de uitwisseling van delen van het wereldmodel Maat mogelijk maken, zinvol zijn.
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Zusammenfassung

Autounfälle sind eine der Haupttodesursachen in der westlichen Welt. In den vergangenen Jahrzehn-
ten haben Automobilhersteller und Forschende ein breites Spektrum an Lösungen für diese Heraus-
forderung untersucht. Innerhalb dieses Lösungsraumes ist die Kommunikation zwischen den Fahrzeugen
seit langem eine vielversprechende Richtung, die hochmoderne Fahrerassistenzsysteme ermöglicht. Die
Assistenzsysteme der heutigen Generation arbeiten mit Hilfe von Sensoren, deren Reichweite begrenzt
ist; um dem Fahrzeug ein vollständigeres Bild seiner Umgebung zu vermitteln, wurden verschiedene
Standards vorgeschlagen, die den Informationsaustausch zwischen den Fahrzeugen ermöglichen. Jüngste
Entwicklungen in diesem Bereich, die mehr Komponenten in diese Kommunikationsarchitektur integri-
eren, führen zu kooperativen intelligenten Verkehrssystemen (C-ITS). Die meisten C-ITS-Anwendungen,
insbesondere auch Safety-anwendungen, treffen Entscheidungen aufgrund von Informationen, die sowohl
von lokalen Sensoren als auch von anderen Fahrzeugen empfangen werden.

Für den erfolgreichen Einsatz von C-ITS ist die Absicherung gegen ungültiges Verhalten der teil-
nehmenden Fahrzeuge, sowie gegen bösartige Angriffe, essentiell. Ohne einen solchen Schutz kann die
Gültigkeit der von anderen Fahrzeugen erhaltenen Informationen nicht garantiert werden, so dass die Zu-
verlässigkeit aller C-ITS-Anwendungen beeinträchtigt wird. Die Forschung hat erhebliche Anstrengungen
in die Entwicklung grundlegender Sicherheitsfunktionen wie Pseudonymisierung und Absenderauthen-
tifizierung investiert. Ein Bereich, welcher bei der Standardisierung bisher wenig Beachtung gefunden
hat, ist das Fehlverhalten von authentischen Entitäten im Netzwerk. Beispielsweise kann ein bösartiges
Fahrzeug versuchen falsche Nachrichten zu übermitteln, die eine Notfallreaktion auslösen und eine Kol-
lision zwischen anderen Fahrzeugen verursachen. Dies kann nicht durch Standard-Sicherheitsfunktionen
wie Signaturen verhindert werden, da ein bösartiges Fahrzeug ein authentischer Absender ist. Im All-
gemeinen wird die Erkennung solcher ungültiger Anwendungsdaten als Misbehavior Detection bezeich-
net. Da verschiedene Angriffe typischerweise durch unterschiedliche Misbehavior Detection Mechanis-
men erkannt werden, ist die Kombination dieser Ausgänge (i.e. Fusion) für die Entscheidungsfindung ein
wesentlicher Bestandteil. Diese Arbeit befasst sich mit diesem Thema durch die Entwicklung von Maat,
einem generischen Framework zur Misbehavior Detection, welches die Gültigkeit der empfangenen Daten
sicherstellt.

Die Beiträge dieser Arbeit umfassen (a) einen detaillierten Überblick über bestehende Misbehavior
Detection Mechanismen, (b) Maat, einen Vorschlag für ein generisches Fusionsframework zur Misbehavior
Detection in C-ITS, (c) Multi-Source-Fusionsoperationen für Subjective Logic, die das mathematische
Fundament unseres Frameworks bilden, (d) mehrere neue Misbehavior Detection Mechanismen, (e) eine
detaillierte Überprüfung der Bewertungsmethoden und Vorschläge für neue Metriken, (f) einen neuen,
öffentlichen Datensatz, der als Grundlage für den Vergleich von Misbehavior Detection Mechanismen
dient, (g) eine detaillierte Bewertung der vorgeschlagenen Mechanismen und Fusionsverfahren und (h)
einen Ausblick, wie diese Ergebnisse auf andere cyberphysikalische Systeme angewendet werden können.

Die Literaturübersicht in dieser Arbeit bietet einen Überblick und eine Klassifizierung der bestehen-
den Misbehavior Detection Mechanismen entlang verschiedener Achsen, einschließlich der Lokalität der
Erkennung, der Art der verwendeten Daten und der Anfälligkeit für Angriffe. Dies stellt nicht nur eine
solide Grundlage für die Anforderungen an Maat dar, sondern unterstützt auch die Entwicklung von
Angriffen und Misbehavior Detection Mechanismen im weiteren Umfeld.

Innerhalb dieser Arbeit entwickeln wir ein Framework, Maat, um Ergebnisse von Misbehavior De-
tection Mechanismen durch Subjective Logic zu fusionieren. Subjective Logic ist ein mathematisches
Framework, welches den Ausdruck von Unsicherheit über Daten ermöglicht mittels so genannten Sub-
jective Opinions. Maat verwendet diese Logik, um ein flexibles Datenmanagement- und Fusionssys-
tem aufzubauen, das die Vertrauenswürdigkeit der Daten bei jedem Zugriff durch Anwendungen bes-
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timmt. Zur Unterstützung dieses Datenmanagements verwendet Maat einen gerichteten Graphen zur
Speicherung der Daten und der zugehörigen Erkennungsergebnisse. Durch die getrennte Erfassung der
Daten und der dazugehörigen Detektionsergebnisse kann eine Vielzahl von potenziellen neuen Detektoren
untersucht werden. Darüber hinaus ermöglicht es den nachweisbaren Austausch von Erkennungsergeb-
nissen, zum Beispiel für die Revocation von Zertifikaten.

Subjective Logic bietet eine Vielzahl von Fusionsoperatoren, um Subjective Opinions zu fusionieren.
Für einige dieser Operatoren ist die Fusion mehrerer Meinungen (Multi-Source-Fusion) jedoch aufgrund
der Nicht-Kommutativität nicht eindeutig definiert. Um Maat zu implementieren, wurden diese Oper-
atoren auf die Multi-Source-Fusionseinstellung verallgemeinert: Wir bieten neue Verallgemeinerungen
für die Weighed Belief Fusion (WBF) und die Consensus & Compromise Fusion (CCF). Wir diskutieren
auch, wie transitive Vertrauensbeziehungen in unserem Framework angewendet werden.

Maat enthält eine Reihe neuer Erkennungsmechanismen, die die Eigenschaften der Subjective Logic
nutzen, um die Erkennungsergebnisse genauer zu modellieren. Wir nutzen diese Mechanismen um zu
zeigen dass die Fusion die Erkennungsleistung im Vergleich zu einzelnen Erkennungsmechanismen steigern
kann.

Im Rahmen unserer Literaturarbeit haben wir festgestellt, dass es erhebliche methodische Unter-
schiede und Bewertungskriterien gibt. In dieser Doktorarbeit geben wir einen Überblick über diese
Unterschiede und schlagen eine neue Methodik vor, die hinsichtlich ihrer Stringenz deutlich über beste-
hender Arbeiten hinausgeht. Diese Methodik umfasst eine Reihe von anwendungszentrierten Metriken
für die Cooperative Adaptive Cruise Control, eine der wichtigsten C-ITS-Anwendungen, sowie Metriken
zur Bewertung der gesamten Erkennungsleistung in einem weit verbreiteten System.

Ein Problem, auf das wir bei der Reproduktion bestehender Arbeiten von anderen Forschern gestoßen
sind, ist die Tatsache, dass es keine öffentlich zugänglichen Benchmarks gibt, gegen die Misbehavior
Detection Mechanismen getestet werden können. In dieser Arbeit stellen wir einen öffentlichen Datensatz
vor, der als Grundlage für solche Benchmarks dienen kann.

Basierend auf dieser neuen Methodik und dem vorgestellten Datensatz bieten wir eine detaillierte
Auswertung der Features von Maat. Dies beinhaltet eine Untersuchung der Erkennungsleistung durch
verschiedene Misbehavior Detection Mechanismen, einen Vergleich der verfügbaren Fusionsoperationen
und die Analyse der Gewichtung zwischen den Detektoren. Auch die Idee von exponential weighted
averaging (EWA) der Detektionsausgaben zum Schutz vor versehentlichen Fehlern wird aufgegriffen.
Unsere Ergebnisse zeigen, dass Maat die Erkennungsleistung insgesamt verbessern kann, während die
Erkennungsleistung von EWA sogar auch bei durchgehenden Angriffen reduziert wird. Wir führen den
Misserfolg von EWA auf die Art der Angriffe in unseren Experimenten zurück, deren Erkennung von der
räumlichen Beziehung zwischen Angreifer und Beobachter abhängt. Diese Erkenntnisse deuten darauf
hin, dass EWA in diesen speziellen Szenarien nicht geeignet ist.

Zusammenfassend wird in dieser Arbeit das Thema Misbehavior Detection in kooperativen intelligen-
ten Verkehrssystemen untersucht. Die Erkennung von Fehlverhalten nutzt das Wissen über physikalische
Prozesse, um die Vertrauenswürdigkeit von Daten und Entitäten in einem cyberphysikalischen System zu
ermitteln. Durch unser entwickeltes Fusionsframework für Misbehavior Detection Mechanismen kann die
Sicherheit solcher Systeme erheblich verbessert werden. Zukünftige Arbeiten in diesem Bereich könnten
die Integration von Misbehavior Detection mit Sensorfusionsprozessen zur Validierung von Sensordaten
und zum Schutz vor Angriffen auf solche Systeme sowie, Erweiterungen umfassen, die ein zuverlässiges
Reporting und die gemeinsame Nutzung von Teilen des Maat-Weltmodells ermöglichen.
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Chapter 1

Introduction

This chapter provides an overview of misbehavior detection and cooperative intelligent transport systems,
as well as giving a broad overview of existing work in this area. Using this overview as a foundation,
the research questions addressed in this thesis are then introduced, alongside a problem statement.
Parts of this chapter have previously been published as part of a literature survey published by IEEE
Communication Surveys & Tutorials [142, 170].

1.1 Motivation

Throughout the field of computer science, securing systems against malicious attackers has become a
fundamental requirement for safe, secure, and dependable operation of applications. Today, professional
attacks against systems, which are mounted by large criminal organizations or even governments, are
becoming increasingly common [119, 135]. At the same time, computer systems are increasingly in-
tertwined with the real world, making them more appealing targets. The term cyber-physical systems
(CPSs) has been coined to encompass systems that are characterized by a large deployment of networked
devices equipped with both sensors and actuators [120]. They are distinguished from traditional embed-
ded systems, where individual nodes interact with the real world in strongly constrained environments.
In contrast, CPSs are highly networked, deployed in large regions, and may contain nodes with heteroge-
neous computational power. A prominent example of a CPS is a cooperative intelligent transport system
(C-ITS), which consists of vehicles, road-side units and back-end systems, and which is the focus of this
thesis. The content transferred in CPSs and C-ITSs is highly predictable, relating directly to real-world
phenomena [96, 120], a fact that enables novel techniques to detect attacks, collectively referred to as
misbehavior detection. Attack detection in general is an essential second layer of security for networks,
especially for widely deployed networked systems in potentially hostile environments, where attackers
may have physical access to a subset of the system. Furthermore, the impact of such attacks is much
greater, as they can easily be tailored to cause real-world harm or loss of life. Therefore, misbehavior
detection in both CPSs and C-ITSs is essential for the secure and thus safe operation of these systems.

Cooperative Intelligent Transport Systems are networks designed to provide a variety of benefits [136,
143, 175]. These include improved road-safety, greener driving through improved traffic management,
support for partially autonomous vehicles, and infotainment services such as traffic information services.
The characterizing communication paradigm of all these applications is that vehicles observe real world
conditions, such as positions of other vehicles or road conditions, which are then communicated over a
ubiquitous network. This network is built up by equipping each vehicle with a wireless interface, creating
a dynamic ad-hoc network that can be accessed without further overhead, which is commonly referred
to as a vehicular ad-hoc network (VANET). The VANET can also include infrastructure components,
referred to as road-side unit (RSU), which are sparsely positioned along the road. The resulting net-
work that includes sparse infrastructure is referred to as a vehicular network. Vehicles use the VANET
to send and receive information, building a world model from received messages, which is used for the
applications mentioned above. However, vehicles can also sense local information through a variety of
sensors, especially with recent developments in partially autonomous driving. This information, commu-
nicated through vehicle-internal networks, is used for autonomous decision making by the vehicle, either
in dedicated driving scenarios or with complete autonomy. These applications are often supported by
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additional infrastructure in the back-end through the Internet. These extensions of a vehicular network,
where cooperation between autonomous vehicles and back-end is central, are collectively referred to as
C-ITSs. In addition to the benefits discussed above, C-ITSs are expected to support the deployment of
autonomous driving technologies with cooperation between vehicles.

Both existing VANET applications and envisioned C-ITS applications present a host of new security
challenges. One of these is the integrity and correctness of transmitted information that is exchanged
between vehicles. A wide body of work is aiming to provide this protection, which can broadly be
categorized into proactive and reactive mechanisms [22]. Proactive security aims to prevent potential
attackers from system access, whereas reactive security assumes that malicious activity can be present
within the system and needs to be detected and corrected. Note that in this context, outsider refers
to an attacker without system access, whereas insider refers to a user with system access (i.e., able to
transmit legitimate messages), rather than the physical location of the attacker.

More specifically, proactive security refers to any kind of mechanism that enforces a security
policy. This category includes mechanisms such as integrity and authenticity checks (e.g., verifying
cryptographic signatures), access control mechanisms and many other systems. In C-ITSs, the typical
approach to provide authenticity is through the use of a public key infrastructure (PKI) to distribute
keys, which are used to generate cryptographic signatures on messages. All unauthorized entities are
excluded from the system, because their messages do not contain valid signatures. The state of the art
for such PKIs is discussed in detail in Section 2.1.2. This creates a trusted perimeter that encompasses
all authorized entities, requiring potential attackers to possess valid credentials to access the system,
reducing the number of attack vectors. However, if an attacker compromises key material or otherwise
manipulates the messages that are transmitted, attacks can still be successful.

Therefore, proactive mechanisms have to be complemented by reactive security. Reactive security
consists of a detection and reaction step, where attacks that are not prevented by proactive security can
be stopped. Detection includes a host of different systems, including those that analyze system behavior
or system state to detect attacks and failures. These mechanisms can take many forms; for example,
a detection mechanism could locate anomalous behavior that indicates an attack or fault. However, it
is also possible to detect known attacks, as is commonly done in traditional corporate IT using, e.g.,
signature-based virus scanners, which detect a database of known malicious binaries. In the reaction
step, the system response can vary from the revocation of a certificate to an instantaneous blocking
or dropping of messages. For example, the program fail2ban is a commonly deployed tool against
SSH password cracking attempts, which blocks login requests from the same source after multiple failed
password attempts. In this thesis, we focus on the detection step in reactive security.

1.1.1 Intrusion vs. Misbehavior Detection

Reactive security mechanisms have a long history in traditional networks, where both intrusion detec-
tion systems (IDSs) and intrusion prevention systems (IPSs) are used. These are actively researched and
many surveys on the topics exist [7, 11, 14, 34]. A general classification is through the method of de-
tection: either by recognizing known attack patterns (signature-based), detection of anomalous behavior
(anomaly-based), or detection of specification deviations (specification-based). Each of these approaches
can be viewed as a classifier of traffic as either benign or malicious. The fundamental difference is that
misbehavior detection instead classifies messages as being either correct or incorrect. Correctness is
defined by whether the message contents correspond to real-world events, rather than by the presence of
malicious intent. This means that misbehavior detection also aims to detect erroneous messages or the
lack of messages, not just malicious messages.

In other words, misbehavior detection refers to the recognition of invalid application behavior, includ-
ing the detection of attacks on data correctness. This requires that valid application behavior is defined,
which in our work is primarily based on (application) semantics that exist beyond the messages that is
analyzed. CPSs and C-ITSs are prime examples of systems that are suitable for such analysis, because
physical laws and processes define valid application behavior. By validating observed messages against
the baseline defined by these physical laws, it can be determined that the messages are invalid, i.e., the
application is behaving incorrectly. In most work, this misbehavior is then attributed to malicious actors
(i.e., attackers that attempt to inject malicious messages); in our work, we are primarily concerned with
data correctness as opposed to attribution of the misbehavior.
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Reducing Speed To Ensure Safety

Real PositionClaimed Position

Figure 1.1: An example of a position falsification attack: the attacker claims a false position near a
benign vehicle to cause it to reduce speed.

traffic jam ahead!

Figure 1.2: An example of a false event notification message: an attacker warns of a traffic jam ahead of
the target vehicles, causing them to change routes.

1.1.2 Examples of Misbehavior

Because of the envisioned large-scale deployment and the direct interaction with the physical world, it is
likely that intelligent transportation systems will attract a number of attackers. Many different types of
misbehavior and attacks are conceivable, and we will provide an in-depth discussion and categorization
in Section 2.2. For now, consider two example attacks to demonstrate the range of possibilities.

Figure 1.1 shows how an attacker might disrupt traffic by claiming false positions. Standards foresee
that periodic message exchanges are used to enable each vehicle to be aware of the vehicles around
it, which is subsequently used for a broad set of applications, including safety and driving comfort
applications. In this example, the malicious vehicle claiming a position near another vehicle, with
the goal of triggering some response from that vehicle, causing it to reduce speed. By repeating this
process multiple times, an attacker can disrupt traffic on the entire road. This attack requires quite a
sophisticated attack, since the false position claims are contained in the standardized periodic messages,
which must contain valid cryptographic signatures to be accepted by the target vehicle. This thesis will
discuss a variety of different misbehavior detection mechanisms to detect this type of attack in Chapter 6.
This specific example can be detected by analyzing the movement pattern of the attacking vehicle, since
different beacons will contain positions near different benign vehicles.

Figure 1.2 demonstrates a completely different type of attack. Here, the attacker uses knowledge of
the protocol semantics to create a message that informs the vehicles ahead of an (non-existent) traffic
jam. Receiving vehicles will use this message for routing decisions and might take an alternate route. As
a result, there might be less traffic on the original road, which is a direct benefit for the attacker. The
main harm caused in this case is that vehicles might slow down when approaching the non-existent traffic
jam location, maybe creating a real traffic jam. In addition, the traffic participants might get confused
in case they notice that there is no traffic jam on the original road. As a result the user acceptance of
the system is lowered. In this example, the attack may be detected by observing that the notification is
not coming from the direction of the claimed event, but rather from the other direction.

If we consider safety applications or automated driving [135], it is conceivable that attacks on intel-
ligent transportation systems can even lead to accidents, possibly threatening the lives of passengers.
For instance, given a set of vehicles that are using a platoon with reduced relative safety distance, an
attacker could inject a fake message that indicates one of these vehicles is breaking, even though this is
not the case. In such a situation, vehicles will immediately respond and in the worst case actually cause
collisions to avoid the non-existent breaking behavior claimed by the attacker. This type of attack has
been studied for its effectiveness in recent works [123], but suitable countermeasures require the ability
to detect false information [159]. This is exactly what misbehavior detection is designed to do.
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1.2 Existing Solutions

Misbehavior detection has been studied in the context of VANETs for some time [156, 164]. As part
of this thesis we conduct an extensive literature survey describing the progress made in the first decade
of vehicular communication research. This includes both misbehavior detection and the overall system
model for C-ITS, which has developed significantly as research as progressed. Basic communication in
these networks is done through an ad-hoc network that is created by periodic transmissions (referred
to as beacon messages). More recent work has also considered the use of multi-hop messages in this
network; all received information is stored by vehicles in their local dynamic map (LDM) [67, 99, 104].
This information is used to provide a variety of safety and driving comfort applications, as well as
traffic information services. In recent years, the rise of partially autonomous vehicles have also become
a potential application, enabling these vehicles to drive even more safely and efficiently.

Parallel to the developments of the C-ITS itself, a significant amount of research has been done to
investigate the security implications of these systems. It became clear in the early stages of this work
that in contrast to existing IT security solutions, the primary focus would be on availability and integrity,
while confidentiality is significantly less important. This is because most of the applications necessarily
require access to information from all the surrounding vehicles. The focus of security work has thus been
to provide scalable solutions that provide integrity at a relatively low cost. Early proposals use public
key infrastructures (PKIs) to issue certificates to vehicles; the associated private keys can be used to sign
messages [18, 91]. To allow any vehicle to validate any received message, various proposals for broadcast
authentication were made. Current standards require that certificates be attached to the message, in
addition to the generated cryptographic signature.

Attaching certificates to every message makes it easy to track vehicles, raising significant privacy
concerns [28, 32, 134]. To alleviate these concerns, most current-day standards foresee pseudonym
certificates, which are typically certificates with a very short validity period (on the order of minutes)
that do not contain identifiable information. This allows vehicles to authentically communicate with their
neighboring vehicles without revealing their identity. To prevent advanced tracking techniques based on
message contents, additional mechanisms such as mix zones and silent periods have been defined in the
literature. These mechanisms increase the difficulty of tracking, but they require that a vehicle can use
multiple pseudonyms in parallel or stop communicating for a short time. Since the latter is impractical
for safety applications, multiple pseudonyms could be used in parallel, a feature that can potentially
be abused by attackers, referred to as Sybil attacks [9]. For example, an attacker could use multiple
pseudonyms to artificially inflate the amount of vehicles observed nearby.

Note that so far we have discussed proactive security mechanisms to prevent attacks from misbehaving
in these networks. However, it is quite likely that at least some amount of vehicles will be compromised
at some point during their lifetime. There are multiple avenues available for this compromise [24]. It
is likely that extraction of key material from the vehicles will eventually be possible for some devices,
which would enable attacker to sign arbitrary messages. Another possibility is a large-scale malware
attack due to a software vulnerability in the vehicle; this enables generic attacks from a set of vehicles,
even if the key material itself is still safe. Other possibilities include targeted attacks on vehicle-internal
communication systems that cause the on-board communication device to transmit incorrect messages.
To detect these types of attacks, misbehavior detection has long been seen as an essential component of
the C-ITS [164, 170].

There are a broad variety of mechanisms available for misbehavior detection, which can be classified
along many axes. One of these axes is the distinction between node- and data-centric detection mecha-
nisms [102]. Node-centric detection mechanisms use concepts such as trust and reputation to determine
the trustworthiness of senders, which is typically associated with the identity or pseudonym used by that
sender. This can be based on previously received messages [51], voting [27], or it can be done through
reporting [25] (i.e., a vehicle claims that another sender is malicious). Data-centric detection mecha-
nisms, on the other hand, fundamentally analyze the trustworthiness of received data, rather than the
nodes transmitting the data. These decisions are based on additional information, such as the expected
transmission range, the speed of light, the maximum speed of a vehicle, or any number of other physi-
cal models. Data-centric detection mechanisms vary from simplistic plausibility checks [30] to complex
behavioral modeling, using e.g., traffic flow to predict density and behavior [149]. There is also a broad
set of detection mechanisms aimed at the above-mentioned Sybil attacks specifically [21, 90].

A number of authors have previously proposed frameworks to combine the results from different
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detection mechanisms. One of the earliest such works is that by Golle et al. [12], who propose a data
management framework that uses hypothesis testing as a basis for detection. The framework requires
a number of simplistic assumptions, but the basic idea is that all data is stored in a database, and
the framework searches for the hypothesis with the fewest number of messages labeled as malicious.
Unfortunately, few details are provided with regards to the implementation of such a system, and the
system itself lacks protection against Sybil attacks. A later work by Lo & Tsai [23] proposes a plausibility
validation network, which basically combines a number of different plausibility checks. Using a rule
database, the authors basically present a firewall-like approach that sets hard thresholds for correct
messages; all incorrect messages are discarded. Compared to other work, the proposed rules are quite
simplistic, and the lack of an evaluation of their performance makes it difficult to assess the impact of
individual rules. Beyond these early proposals, several authors have also written a larger body of work
with more extensive frameworks; these include VEBAS by Schmidt et al. [35], Stübing’s PhD thesis
and subsequent papers [73, 108], Raya’s PhD thesis and subsequent work [40, 64], and Bißmeyer’s PhD
thesis [111]. We briefly discuss their weaknesses, which motivated our work; for a detailed discussion,
refer to Chapter 2.

In VEBAS [35], the authors consider the fact that a large amount of detection mechanisms will be
necessary to reliably detect most attacks. The idea of this framework is comparable to that of Lo & Tsai,
combining a spectrum of plausibility checks into a local trust value. This is then combined with trust
messages from other vehicles into an aggregated trust value. The local trust value is based on the addition
of different detection mechanism outputs, which means that every time a new mechanism is added, the
fusion approach must be revisited. If this is not done, then the combination of these results will be
biased towards those attacks for which multiple detectors exist. There is also no clear way to deal with
conflicting results in this framework.

The work in Stübing’s thesis [108] made significant strides in the privacy-preserving detection of
attacks on a specific application, namely tracking of nearby vehicles. This is done basically through
a set of plausibility checks that must pass, after which the framework validates whether the vehicle is
behaving as expected through a Kalman filter. This work has since been built upon by others with
more advanced techniques, e.g., using an extended Kalman filter and vehicle-internal sensors [165]. The
primary weaknesses of Stübing’s work is the fixed combination of plausibility mechanisms, leading to
a highly inflexible system with lots of manual configuration effort to add new mechanisms. This is
especially problematic because such plausibility checks have to be valid in any situation that a vehicle
will ever encounter.

Raya have designed a data-centric trust establishment framework in their thesis [40]. This work
focuses primarily on the trust and revocation aspects of the framework, using game theory as a basis to
show the limits of trust schemes. To establish trust, a variety of different tools are examined, including
Dempster-Shafer theory and Bayesian inference. These reasoning tools enable a complex system that
generates reliable trust, but the evaluation of this work relies primarily on whether an attacker is eventu-
ally revoked. In our work, we focus more on the timeliness factor, evaluating the framework’s capability
to give reliability estimates immediately after a message has been processed.

Finally, Bißmeyer’s thesis [111] describes a specific misbehavior detection mechanism and discusses
how this mechanism can be used for both local and global detection. Their work introduces the overlap-
ping position detector, which combined with the work from Stübing is claimed to be a reliable detection
scheme for position falsification attacks. This detection is transferred to a global misbehavior authority,
in addition to local operation. Although this transfer to a global authority is useful, the evaluation
methodology of their work is weak; neither data nor source code is available for any of their studies.
We unsuccessfully attempted to replicate their work through re-implementation; we suspect the issues
encountered are due to the same timeliness factor discussed in the context of Raya’s work.

In summary, this thesis aims to address the weaknesses present in existing work. Some of these
weaknesses arose through recent developments in the field of C-ITS, resulting in shifting requirements
that invalidated previously reasonable assumptions. Others arise from the fact that designing individual
mechanisms for misbehavior detection is simply quite hard, because there are many different attacks.
These attacks are highly situation-dependent, and thus building a general classifier that splits all messages
into legitimate and incorrect is unlikely to work. For example, on a highway, a beacon message with a
speed of 0 km/h is legitimate when a traffic jam exists, but not under normal circumstances. In essence,
we propose a flexible fusion approach that can encompass many mechanisms, each of which can be tuned
to detect a specific attack; our fusion then enables accurate detection based on those results.
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1.3 Problem Statement

Reliable vehicular communication is likely to be a key factor for safe mobility in the future. This has led
to a surge of new research, investigating vehicular communication and its security in the new context
of (partially) autonomous vehicles. Through the addition of communication, cooperative intelligent
transport system (C-ITS) are born, raising new challenges for the defensive security community: how
can connected autonomous vehicles be protected from malicious messages?

Adopting existing work that detects misbehavior in VANETs does not work for several reasons. First,
most existing work on misbehavior detection requires a significant time frame before reliable decisions
can be made. This is both due to the way detection mechanisms are designed, and because trust is
considered a significant factor in these systems. Because trust is built over time, this causes inevitable
delays. Secondly, existing solutions that detect misbehavior in VANETs have shown to be tied to
specific attacks, and thus a combination of these solutions is required. In existing work, a static pre-
defined combination of these results is used to detect attacks, which results in an inflexible system that
can be potentially exploited by an attacker. It also makes it difficult to add new detection mechanisms
that detect previously unknown attacks, potentially requiring a re-configuration of the entire system
and all associated detection mechanisms. A holistic detection framework that enables fusion of different
detection mechanisms without this issue of reconfiguration does not exist, to the best of our knowledge.
In this thesis we focus on the development of such a framework, taking into account the new challenges
raised by C-ITS and autonomous driving.

With increasing vehicular autonomy and thus control being taken away from the driver in some
situations, it is no longer possible to rely on the driver to be the final responsible actor for decision making.
Combined with increased speed and density promised by applications such as cooperative adaptive cruise
control (CACC), where vehicles drive very close to each other to increase road utilization and save fuel,
it is clear that security needs to step up. Many researchers are increasing the runtime performance of
security mechanisms, bringing guaranteed integrity for the communication closer to reality. A direction
that is only now experiencing a revival is the study of misbehavior detection for this communication: how
can we guarantee correctness of the communication, rather than just the integrity of the messages? This
thesis provides a main contribution to this question, as illustrated by the following research questions.

RQ 1. How can detection performance of misbehavior detection in cooperative intelligent transport sys-
tems be improved, while also supporting the stronger requirements of autonomous driving?

This is the primary research question of this thesis, asking how new security challenges raised by
vehicular autonomy can be addressed, while at the same time improving detection performance overall.
We divide this question into three sub-questions:

1. Can existing data-centric detection mechanisms be modified and improved to individually deal with
noisy and uncertain information?

2. How can data fusion be applied to misbehavior detection mechanisms in a way that improves the
overall detection performance?

3. What modifications to misbehavior detection mechanisms enable further improvements in detection
performance?

We first provide a detailed overview of the state of the art in Chapter 2, explaining the differences
with our work in detail. We then address the first question in Chapter 6, from which we conclude
that meaningful overall improvements cannot be obtained by optimizing individual mechanisms. This
is further confirmed by the simulation experiments conducted in Chapter 8, which show that individual
mechanisms also imply a trade-off between false positives and false negatives. We discuss data fusion
through subjective logic extensively in Chapter 5, and evaluate the resulting framework in terms of detec-
tion performance in Chapter 9. The results show that fusion can be used to meaningfully improve overall
detection performance, especially when multiple attack types and orthogonal detection mechanisms are
considered. However, we also show that detectors require modification to extract meaningful perfor-
mance, confirming that applying data fusion is not a silver bullet. Approaches for these modifications
are discussed, followed by concrete proposals and evaluation in Chapters 5, 6, and 9 respectively.

In order to answer our research question, we introduce two additional questions that were raised
during the work done in this thesis, which are formulated as RQ 2 and RQ 3.
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RQ 2. How can data be stored, managed, and exchanged to support improved detection, inclusion of new
detection mechanisms, and validation of detection?

To allow the integration of novel detectors and support our proposals for improved detection, we
require a useful representation of received data. As we developed such a representation in the early
stages of this thesis, we realized that this representation can also be used to exchange detection results
between actors. Inspired by this, we set out to provide a generic world model that enables any detection
to take advantage of subjective logic, resulting in the following sub-questions:

1. What data management scheme enables reproducible detection results, while still enabling near
real-time decision making required by cooperative autonomous vehicles?

2. How can subjective logic be adapted to fuse information from multiple sources at once, despite the
non-associative definition of existing operators?

3. Can misbehavior detection mechanisms be designed to provide sufficient information, such that an
issuer can reproduce the results and revoke the associated pseudonymous certificates?

We develop a world model representation of both received data and detection results, based on a
graphical interpretation of subjective logic, which maintains historic information. Through this data
management scheme, we can reproduce and redistribute detection results by sharing sub-graphs of this
model. The resulting framework, Maat, is introduced in Chapter 3, while the details and trade-offs in
data management are described in Chapter 4. To actually implement the fusion improvements we aim
for, we also needed to extend the foundations of subjective logic. Chapter 5 describes these extensions,
including multi-source extensions of several operators and a description of the use of information from
unreliable sources. Our third sub-question provides an outlook on how Maat can be used to improve
the overall trustworthiness of the C-ITS by enabling revocation of malicious actors. We do not provide
a specific revocation scheme, but rather explain how results achieved in local instances of Maat can be
redistributed in Chapter 6.

RQ 3. How can we support the scientific development and analysis of misbehavior detection in cooperative
intelligent transport systems?

In order to draw scientifically rigorous conclusions from our results, a significant portion of this
thesis addresses methodological questions. The new generation of misbehavior detection research ad-
dresses cooperative intelligent transport systems, which brings with it new requirements and therefore
methodological standards and metrics. In this thesis, we place previous work on firmer methodological
grounding and describe new metrics for the analysis of applications and detection performance. This
process is sub-divided into three sub-questions:

1. Which evaluation methodology is suitable for the evaluation of misbehavior detection in cooperative
intelligent transport systems?

2. What metrics can be designed that accurately reflect the real-world performance of cooperative
intelligent transport systems, and which of these metrics are suitable for misbehavior detection?

The first two sub-questions are addressed in detail in Chapter 7, discussing in particular the subtleties
involved in the choice of gold standard. For C-ITSs, we require a stricter gold standard, where the
detection mechanism must detect all attacker messages, rather than just recognizing it within a certain
time period (as was commonly done by earlier work). Because misbehavior detection is always a trade-off
between false positives and false negatives, we also discuss metrics that can measure the implications
of this trade-off. This results in a discussion of application-specific metrics in the context of CACC,
where we the impact of attacks through reduced efficiency and collision impact. We also describe a
generic metric to assess the dispersion of false positives and false negatives over a fleet of vehicles. Low
dispersion (i.e., errors are concentrated in specific vehicles) implies that detector performance depends on
the relationship between attacker and victim. This indicates that the exchange of reproducible detection
results can enable a central authority to eventually revoke malicious actors.
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Chapter 2

Related Work

This chapter introduces the C-ITS system model, followed by a review of the misbehavior detection
literature, followed by a detailed discussion of different frameworks that have been proposed for misbe-
havior detection. Since the term framework is used loosely in the literature, this chapter concentrates
on proposals that are essentially combinations of different approaches. Some use it to refer to an array
of detection mechanisms, aligned to detect a specific attack (or protect a specific use case), while others
concentrate on protection against a wide variety of attacks. Our discussion of frameworks is restricted
to proposals that are sufficiently comprehensive to be considered a framework (as opposed to a specific
detection mechanism), and we highlight the differences between those proposals and ours in Section 2.4.
A wider discussion of ideas introduced by a more diverse set of authors can be found in our survey
article [142, 170]. Parts of this chapter are based on this work, although the discussion here is extended
with a discussion of the differences between these frameworks and Maat, the proposed framework of this
thesis.

2.1 C-ITS System Model

Here we briefly introduce the basic C-ITS system model, as well as the baseline security measures that
are currently being standardized and a brief overview of security credential management and privacy
considerations. Although research on proactive security in this area is still progressing, we consider this
to be largely orthogonal to our work. This is because some attack vectors will persist regardless of the
proactive security mechanisms that are active. We will end this section with an overview of attacks that
exploit those attack vectors.

2.1.1 C-ITS overview

The C-ITS system consists primarily of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, which is proposed to be based on the IEEE 802.11p amendment, which specifies MAC
and PHY layers for short-range communication between vehicles. Communication is performed at 5.9
GHz with a communication range that is typically between 100 and 500 meters, and which is highly
dependent on the scenario and buildings in the vicinity. IEEE 802.11p has gained world-wide adoption
as a basis on top of which standardization agencies are building C-ITS applications. For example,
the European telecommunications standardization organization, ETSI, has a family of standards for
C-ITSs, referred to as ITS-G5, which provides communication primitives. On top of these, safety and
entertainment applications are being developed. Similar initiatives exist in the US in the IEEE 1609
family of standards, in conjunction with the society of automotive engineers (SAE).

In contrast to routing in classical IT systems such as the Internet, multicast and broadcast are the
predominant networking patterns in C-ITS [36]. These patterns are much more suitable for the envisioned
applications, which vary from lane change warnings to cooperative adaptive cruise control (CACC) and
city-scale traffic flow optimization. CACC is an application that has gained significant attention in
recent years, and is essentially an extension of adaptive cruise control (ACC), where the safety distance
between vehicles is reduced. In CACC, vehicles periodically exchange position information to form a very
tight formation that would normally be susceptible to collisions [143]. This is done using a coordinated
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controller that takes inputs from sensors and messages to compute a behavior that causes the platoon
to be stable. The leader of the platoon is typically responsible for the maintenance of the platoon, while
all the follower vehicles accept that vehicles’ overall goal for the platoon. Platooning is thus a form of
partially autonomous driving that goes beyond the potential benefits from sensor-equipped vehicles. The
data exchanged between the network participants, vehicles and infrastructure alike, share the property
that they are relevant to all receivers. Therefore, addressing packets to specific vehicles does not make
sense; instead, addressing refers to the local neighborhood (1-hop broadcast), specific regions (geocast)
and infrastructure. This style of addressing allows the network to exploit the simple fact that wireless
networks are a broadcast medium by nature.

These communication patterns are supported by two message types in the European model: the
periodic cooperative awareness message (CAM) [68] and the event-driven decentralized environmental
notification message (DENM) [48]. In the US, standardization foresees a two-part basic safety message
(BSM) [41, 92] that roughly corresponds to the CAM and DENM. These message types make up the
bulk of communication between vehicles; in Europe, additional message types are currently under stan-
dardization for specific applications, such as the signal phase and time (SPaT) and topology specification
(TOPO) message types. Both the CAM and the first BSM part consist of core elements including po-
sition, heading, speed, steering wheel angle and vehicle size. Supplemental information can be added,
such as vehicle role and status of vehicle lights. CACC applications can technically work with just
CAM/BSM.1 information, but most proposals include acceleration information into beacon messages for
better performance.

The second BSM part is only transmitted when a specific event occurs, similar to DENMs, but
is packaged within the next periodic BSM instead of being transmitted separately. This second BSM
part is also single-hop; unlike the European model, which specifically foresees DENMs as multi-hop
messages, events are transferred through 1-hop BSMs only. DENMs are event triggered messages, which
are designed to warn about specific events, such as traffic jams, emergency breaking, an approaching
emergency vehicle, or road construction. DENMs are usually relevant for specific geographical area, and
can be forwarded there over multiple hops. A geobroadcast protocol is specified [69], which first forwards
messages to the designated target region and then broadcasts the message within that region.

Although V2V communication using CAMs and DENMs is able to support a large number of use cases,
some use cases require V2I communication. Infrastructure can help to increase communication range
during the initial deployment phase, especially in critical areas such as intersections. Another important
feature of infrastructure is that it enables communication with back-end infrastructure and the general
Internet. This is useful for non-safety application classes, such as infotainment services, over-the-air
software updates and security credential updates. RSUs can also be used to enable specific applications,
such as traffic and fuel management through SPaT messages1. However, large-scale deployment of
roadside units is considered unlikely due to the estimated deployment and operation costs of 3,000–5,000
US dollars per RSU [26].

Complementary to RSUs, cellular communication can be used to provide back-end and Internet
connectivity, making use of the fact that broadband cellular communication services like long-term
evolution (LTE) have already been deployed on a large scale. However, the necessary developments
to support a large fleet of vehicles in addition to regular cell phones have not yet been made, despite
recent strides in this area [175]. One of the major open question is related to the business model; thus
many assume that cellular support will likely remain restricted to more expensive vehicles, at least as
long as cellular usage still incurs considerable fees. New proposals from the area of 5G suggest that an
ad-hoc-like mode dedicated for inter-vehicle communication will also be available in the form of LTE-
V, also referred to as C-V2X, which is inspired by device-to-device communication (D2D) [163]. This
approach has significant backing from industry, but lacks fundamental privacy guarantees in the same
way that standard cellular communication does. Independent of C-V2X, some have proposed the use of a
heterogeneous network in recent years, using both IEEE 802.11p-based and cellular communication [151].
This approach can take advantage of both networks, but also presents the challenge of efficiently managing
the available channels in a decentralized way [140]. Both heterogeneous networks and pure cellular
proposals are still in research phases, and will likely face many of the same security challenges as IEEE
802.11p. Although we focus primarily on the IEEE 802.11p setting, we expect the results of many
schemes to transfer to C-V2X with limited modifications.

Beyond the communication model under standardization, some authors propose that clustering might

1These messages inform incoming vehicles when the traffic light will turn green, allowing more efficient fuel management.
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be a viable approach to organize the communication. Current standards do not foresee this approach
because it has significant disadvantages in terms of communication overhead to create and maintain
clusters [42]. These clusters are typically created and maintained in an ad-hoc fashion, to facilitate
deployment, which requires vehicles to agree on one or more cluster heads that manage a cluster. The
disadvantage of this approach is that it requires a fundamental inequality between different vehicles to
take advantage of clustering, i.e., the cluster heads must have an authoritative status. It is also unclear
how well clustering can perform, which is highly dependent on the dynamicity of the network topol-
ogy. For safety applications in particular, adding additional delays through clustering setup processes
significantly increases the risk that essential information is communicated in time. In addition to these
concerns, this network model faces security challenges that are widely different from the standard C-
ITS communication models. Although it is realistic that the results in this thesis can at least partially
be adapted for clustering, we do not address clustering explicitly in this thesis for the aforementioned
reasons.

2.1.2 C-ITS Security

In order to mitigate possible attack vectors, security features are actively considered by both academia
and industry. Standardization agencies have developed an initial standard for practical implementation,
which serves as the basis for a lot of work in C-ITS security. Unlike traditional networks, though,
confidentiality is not considered a major requirement, because most applications inherently rely on the
data exchanged between vehicles. The main focus is instead to ensure integrity and authenticity, for
which standardization employs proactive security mechanisms. The basic approach is to set up a PKI
and provide each vehicle with an asymmetric key pair and a certificate. The certificate contains the
public key alongside a number of C-ITS specific attributes (e.g., vehicle type, vehicle dimensions, license
plate number) and is signed by the key issuing authority [24, 28, 32]. This serves as a long-term identifier
of a vehicle that confirms it as a valid participant in the C-ITS. We first discuss the basic application of
these certificates for C-ITS security, before discussing proposals for credential management in detail in
Section 2.1.3.

The ETSI TS 103 097 standard [99] in Europe and the IEEE 1609.2 standard [104] in the US specify
how certificates should be used to achieve integrity and authenticity. The basic idea is that each outgoing
message is signed using the sender’s secret key. The signature and certificate are both attached to the
message to enable broadcast authentication, i.e., each receiver can check message authenticity without
further message exchanges. For efficiency reasons, some authors have proposed certificates could be
omitted periodically to save bandwidth [91], but this introduces additional delays beyond those already
present due to time needed for verification. In both European and American standards, the cryptographic
algorithm is the elliptic curve digital signature algorithm (ECDSA), using the p-256 curve standardized
by NIST [106]. This signature and certificate validation process provides sender authenticity and message
integrity, protecting against attackers that transmit messages using commodity hardware without key
material.

While signature and certificates effectively thwart most attacks using commodity hardware without
key material, they do not provide any guarantees on message correctness. Because of the expected wide
deployment of C-ITS and the long lifetime of vehicles, it is likely that attackers either physically own
a vehicle or are otherwise able to extract key material from (old) communication units. If key material
is stored on a regular storage medium (e.g., hard disk or flash memory), attackers with physical access
to a car could easily extract it, transfer it to other devices, and create arbitrary messages with valid
signatures. Some do propose to use trusted hardware, usually in the form of a hardware security module,
to protect key material [24, 28]. Here, the idea is to store (secret) key material within a tamper resistant
component that is protected against outside access. If a message needs to be signed, it can be forwarded
to the trusted device and the signature is returned. Thus, the key material never leaves the trusted
hardware, making it much harder for an attacker to extract secret keys and subsequently sign arbitrary
messages. As in normal PKIs, revocation can be employed to mitigate this issue, but this raises new
questions on how key material abuse can be detected in existing vehicles.

Note that if key material is kept in trusted hardware, the application code is still untrusted: it is
likely that attackers are able to manipulate the software in order to create arbitrary messages. These
messages will then be signed, because the signing functionality running on trusted hardware has no way
to tell whether messages have been manipulated [18]. The alternative would be to build an architecture
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in which all hardware is trusted, but this also has many disadvantages. First, running all software
on trusted hardware will greatly increase cost, because more powerful trusted hardware is needed. In
addition, if all applications need to be manually certified and deployed on trusted hardware within the
vehicle, over-the-air updates are more complicated and the deployment process of new software is slowed
down. Even if attackers are not able to modify the software, they may be able to modify sensor readings,
which lead to modified messages as a result. To alter sensor readings, attackers can either inject false
readings in the controller area network (CAN) bus or directly modify sensor hardware. Therefore, it
is likely that software running on the vehicle can be controlled by a capable attacker, despite trusted
hardware. This requires us to consider correctly signed messages with invalid contents circulating in the
network.

2.1.3 Certificate Management & Privacy

If vehicles attach their long term certificates to all outgoing messages, they can be tracked using a trace
of received messages with attached location information. For this reason, long-term certificates can be
replaced by short-term identifiers, referred to as pseudonyms. These pseudonyms make it harder to collect
location traces of specific vehicles [28, 32, 134], while still providing the same authenticity guarantees.
Pseudonyms significantly improve privacy, although their efficacy in the absence of protocol-level changes
may be limited [62], due to the fact that message contents allow linkability. While pseudonyms enhance
privacy, their parallel use enables potential attacks, often referred to as Sybil attacks [9], which is a class
of attacks where multiple identities are used by one actor (see Section 2.2.1). In this section we first
present a discussion of some proposals for certificate management.

A standard PKI only foresees the model as discussed above: each entity has a valid certificate that
identifies the entity, and authenticity entails identification. For privacy reasons, many proposals have
been made to issue a set of pseudonyms, which is typically linkable under certain conditions to the
long-term identifier of the entity [134]. The creation, distribution, management and revocation of these
pseudonyms present a trade-off between privacy, security and performance. Two major proposals are
now in the initial stages of deployment, which analogous to standardization of communication can also be
seen as a European and a US proposal. In the US proposal, Brecht et al. [168] propose the use of butterfly
keys to provide a cryptographic link between different certificates. In this model, pseudonyms are issued
in bulk, revocation is done by revealing the butterfly key, and a misbehavior authority interacts with
the pseudonym issuing entities to detect attacks in the back-end. Recent European proposals, such as
that suggested by Khodaei et al. [173], take an on-demand approach to pseudonym issuing, and claim to
have more protection against Sybil attacks. Such protection can be provided by limiting the validity of
pseudonyms, which is a trade-off against performance in the US model (where many pseudonyms would
be wasted due to batch issuing).

In general, these pseudonym issuance systems provide a partial framework that in turn influences the
suitability of certain detection schemes. At the time of writing, it is still not clear which exact scheme
will be implemented world-wide, or whether disparate systems will be used in different parts of the
world. However, the constraints posed by the credential management system impacts potential detection
mechanisms, primarily through how easily Sybil attacks can be executed. This aspect of pseudonym
management is addressed in our literature systematization, as discussed in Section 2.3.3.

2.1.4 Attacks on C-ITS

Here we briefly review a number of proposed attacks on the C-ITS, particularly those that can still be
performed within the scope of existing security mechanisms as described in the previous subsections.
These are divided along the lines of the cyber and physical in a cyber-physical system; in this thesis we
primarily focus on the cyber component. A detailed discussion of adversary models can be found in the
work by Papadimitratos et al. [19]. For attacks on the cyber layer, the attackers of primary interest for
C-ITS have turned out to be internal active adversaries with bounded presence. For the physical layer,
a natural first choice is the input-controlling adversary discussed by Papadimitratos et al. [19], although
this model may be too strong for some specific sensor types.
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Cyber attacks

The space of possible attacks on computer systems is vast; we concentrate on attacks that are not easily
avoidable through security mechanisms that are already implemented. As there are many survey articles
discussing attacks [136, 156, 164], we here provide a review of the important types and refer interested
readers to those articles for a detailed review. The attacks we discuss here are jamming attacks, data
injection attacks, replay attacks, routing attacks and Sybil attacks.

In a jamming attack, the attacker disrupts communication from or to specific nodes by transmitting
a constant or targeted burst communication to disrupt communication between nodes. This essentially
means that the attacker can decide which messages will arrive, and which do not. This attack is commonly
discussed in CACC and can be executed even by low-power devices such as unmanned aerial vehicles
(UAVs) [150].

Replay attacks, on the other hand, refer to an attacker re-transmitting received messages. Standard
proactive mechanisms provide some protection against replay attacks by including a time stamp in every
message. In C-ITSs, a relatively reliable source of timing is available in the form of a global navigation
satellite system (GNSS), which also provides high-accuracy time synchronization [147]. Attacks on GPS,
currently the primary GNSS assumed by many works, can be modeled as input-controlling adversaries,
and are relatively well-studied. Many effective countermeasures have been designed that protect against
such attacks [147], and thus we consider these attacks to be out of scope. However, in multi-hop
communication it is conceivable that these attacks can affect throughput.

Replay attacks in multi-hop communication are closely linked to routing misbehavior, a well-studied
class of attacks that aims to disrupt network performance. This category of attacks originates from mobile
ad-hoc networks (MANETs), and both attacks and defense mechanisms have since been transferred to
vehicular ad-hoc networks (VANETs) and other types of ad-hoc networks. Basically, the attacker deviates
from the routing protocol to cause messages to be lost or be routed through a specific node. Unlike most
attacks we study, routing attacks do not directly affect safety, and thus we consider these attacks to be
of limited importance. Note also that C-ITSs includes infrastructure; if available, using infrastructure
by default for long-distance communication significantly reduces the impact of routing misbehavior.

Another important class of attacks is that of data injection; in these kinds of attacks, an attacker
claims information that contradicts with real-world information. The purpose of such an attack can be
disrupting road traffic, or even triggering a collision. For example, attackers may falsely claim that a road
is blocked to have the road for themselves, or they may claim a vehicle is directly in front of a victim,
causing the victim to trigger the breaks. As suggested by these examples, attacks have widely different
goals, with varying time-sensitivity. Because of the variety of attacks, many different mechanisms to
detect them have been proposed in the literature, and a large chunk of misbehavior detection is directly
related to these attacks. Authors have shown [123, 159] that CACC is particularly vulnerable to these
attacks, and being able to detect them is essential for the design of secure control algorithms.

Sybil attacks [9] are a specific type of attack associated with the pseudonym discussion above. In
the simplest case, an attacker here uses multiple identities to achieve a specific goal. In C-ITSs, this
goal is often related to the application, similar to data injection attacks: an attacker may use multiple
pseudonyms to make it appear as though the road is full, even though it is not. Closely related to this
are various types of attacks on specific detection mechanisms, where the attacker uses the identities
to boost the reputation of specific vehicles, or conversely reduce the reputation of legitimate vehicles
(bad mouthing attacks). A detailed discussion of reputation systems and attacks on them was provided
by Koutrouli et al. [133]. It is important to remark that Sybil attacks can be performed not just on
reputation systems, although this is a widely-studied case; we return to this topic in our discussion of
the attacker model (section 2.2.1).

Physical attacks

Apart from the cyber component, there are also many attacks possible on the physical processes sur-
rounding the vehicle itself. Recent work on the security of CANs [54, 74], which are the primary type
of bus used in current vehicles, has shown that they are vulnerable to attacks. So far, this work has
primarily focused on attacking a vehicle from the outside; however, an attacker attempting to attack the
C-ITS could similarly exploit their physical access to the bus. Such attacks allow an attacker to force the
on board unit to transmit arbitrary messages that conform to the network specification without needing
to compromise the hardware security module. This situation reflects the input-controlling adversary of
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Papadimitratos et al. [19], and it leads us to conclude that attacks within a specific vehicle are likely to
lead to false messages being disseminated in the C-ITS.

Some authors have also suggested that physical attacks on specific vehicles may be possible. This
works by directing the attack towards the sensors themselves [135]. A simple example of such an attack
would be taking a laser pointer and disrupting the cameras of a nearby vehicle. We primarily focus on
attacks in the cyber space; however, we feel it is important to also consider that physical sensors are not
necessarily immune to attacks.

2.2 Misbehavior in C-ITS

In this section, we will go into more detail concerning misbehavior in C-ITSs. In particular, we discuss
the attacker model and different types of realistic attackers; this will be the basis for the remainder of
the thesis. We provide a detailed review of existing misbehavior detection mechanisms in Chapter 2.

2.2.1 Misbehavior Definition and Attacker Model

In this subsection, we will treat the definition of misbehavior and the attacker model associated with
it in the context of C-ITSs. This definition is based on the notion of misbehavior discussed above, but
integrates it within the state of the art of C-ITSs.

Defining Misbehavior

In literature, there are many different definitions of misbehavior [18, 24, 25, 43, 78], often implicitly
defined by the attacker model rather than explicitly being stated alongside it. Misbehavior is a broad
term; its origins are somewhat unclear, but it is commonly used for ad-hoc networks when discussing
specific attacks that are executed by the participating nodes, as opposed to intrusions or attacks. Our
definition of the term covers not only attackers and malicious participants, but also faulty nodes. Mis-
behaving nodes are thus any node that transmits erroneous data that it should not transmit when the
hard- and software are behaving as expected. We argue that a misbehaving node is the type of node
we should detect. However, the literature often distinguishes [22, 23, 28, 31] between faulty node and
malicious node, which are defined as follows:

Faulty nodes are those participants in the network that produce incorrect or inaccurate data without
malicious intent. Faulty nodes are usually related to faults in sensors, either because the sensor was
damaged or because of errors caused by variance in the sensor. Examples include a heat sensor that is
malfunctioning, causing the node to transmit the current temperature to be -50 degrees Celcius, and the
error caused by a reading produced by a GPS device, which can cause vehicles to transmit an erroneous
position.

Malicious nodes or attacker nodes are those nodes that are transmitting erroneous messages with
malicious intent. Such messages may also be referred to as deceptive messages, and the attackers as
deceptive attacks. These nodes are our main target for detection, as they represent a direct threat to the
integrity of the data exchanged in the network. These nodes can actively attempt to avoid detection, or
subvert other nodes in the network to transmit their erroneous messages. This definition includes denial
of service attacks and exclusion of messages that should be sent (e.g., attacks on routing). The goal,
source and means of these nodes may vary greatly, as discussed below.

Note that these definitions are not consistently used throughout the literature; in our work, we use
misbehavior detection to refer to the detection of both faulty and malicious nodes. Unlike traditional
intrusion detection, misbehavior detection attempts to detect incorrect packets, rather than detecting
malicious packets. There are many good reasons to avoid a focus on content in a generic networking
setting: unlike in C-ITSs, such networks see a lot of encrypted traffic and a large variety of application
layer protocols. In C-ITSs, we have relatively few protocols, and the public nature of transmitted data
implies that content is rarely encrypted. In addition, C-ITSs lack a clear system boundary, which is
essential for effective IDS deployment. Misbehavior detection can take advantage of the public nature
of data, and does not suffer from the lack of a system boundary, making it a potentially more suitable
approach. This type of detection may not be feasible for normal networks, but the characteristics shared
between C-ITSs and cyber-physical systems (CPSs) suggest some schemes could be used in both systems.
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Attacker Model

We now review several attacker models that are used in the literature. The secondary purpose of this
section is to discuss the challenges involved with the development of a good and universal attacker
model for C-ITSs. Unlike most network scenarios, there is no universally accepted attacker model that
is consistently used for C-ITSs; here we provide a brief overview of the most common assumptions.

The attacker model from [24], one of the seminal works on security in C-ITSs, presents the following
four classification dimensions for attackers, and a variety of basic and sophisticated attacks. We already
discussed the distinction between insider and outsider, i.e., whether or not the attacker possesses valid
credentials. The motivation of the attacker is classified as either rational, where the attacker has a
direct benefit from his attack, and malicious, where an attacker only seeks to disrupt or cause harm.
The attacker may be active or passive, which considers whether the attacker can transmit messages or
signals, or whether the attacker only eavesdrops on the channel. For this thesis, we seek to detect active
attackers only, as the very goal of misbehavior detection is to determine whether certain messages or
signals constitute undesirable behavior; eavesdropping is not misbehavior, in the sense that it cannot be
detected. The final classification dimension is the scope of the attack, which may be local or extended.
This distinction does not consider the amount of attacker-controlled nodes, but rather their distribution
over the network. Local refers to one or more attackers distributed in a small region, such as a highway
section between two intersections or a few neighboring intersections in an urban setting. The extended
scope provides for a number of attacker-controlled nodes across a larger region.

Most attackers in this classification are instances of the standard Dolev-Yao attacker model [3] that is
used for cryptographic protocols. However, the insider attackers that behave according to the protocol,
but send false information are not covered in the attacker model. These can instead be modeled using
an input-controlling adversary, as discussed in detail by Papadimitratos et al. [19]. In addition, as
discussed by the authors [24], Sybil attacks play a significant role. In those attacks, attackers obtain
multiple identities (multiple certified key-pairs) to circumvent reputation mechanisms. Many authors of
detection mechanisms implicitly or explicitly limit the potential for Sybil attacks, meaning the attacker
has possession of a small set (usually 1-3) of valid pseudonyms for each vehicle they control. As mentioned
previously, recent proposals for PKIs include such considerations [173] to limit the available pseudonyms
for this reason. Other proposals [168] suggest that such solutions are not cost-effective; in addition to
this, there is a potential impact on privacy due to the potential of tracking [62].

One alternative means to address the challenge of Sybil attacks without violating privacy is the use
of hardware security modules (HSMs), as mentioned by several seminal works on VANET security [24,
28, 32]. There have also been many proposals to implement such hardware-based solutions [66, 166].
However, such an approach faces many unsolved issues, which is why in this thesis we assume the PKI-
based model, where the limited validity of pseudonyms is used to address the risk of Sybil attacks. These
issues are primarily related to the input-controlling adversary model [19], where an attacker might attack
the network by compromising a vehicle from within. Since the attacker has full control of the input of a
vehicle in this case, the vehicle must be assumed to transmit false messages, unless the entire vehicle is
part of the trust base. We argue that the latter assumption is unrealistic. Limited pseudonym validity
can be achieved either at the certification level or within the hardware that uses the key material. We
assume that this occurs at the certification level, since we expect that wide distribution of HSMs in
vehicles is likely to lead to at least some of these devices being compromised (which would enable Sybil
attacks).

One concern is that many authors [24] consider RSUs to be fully trusted. We remark that although
this may be the case for connections leading outward through the RSUs, full trust cannot be assumed
for the devices themselves. As the name implies, road-side units (RSUs) are deployed on the side of
the road, which makes them susceptible to physical attacks like sensor tampering and differential power
analysis, just like regular vehicles. Because RSUs are potentially more authoritative, they are potentially
valuable targets if too much trust is placed on them.

On the other hand, the full Dolev-Yao model, with the extensions and limitations described above, is
too strong to provide a meaningful level of security. Particularly, if the attacker is allowed to arbitrarily
re-organize the packets received by each individual node in the network (as in the Dolev-Yao model), they
can selectively deliver only those messages that confirm the view presented by the attacker. In reality,
the attacker is also subject to the limitations of physics. For example, an attacker cannot arbitrarily re-
arrange the reception of messages for each receiver in a wireless network. For this reason, the literature
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specifies an important limitation compared to the Dolev-Yao model: an attacker must be a node in
the network, restricted by the same physical properties that restrict a normal node. Although their
transmission range may be increased through power control [176], attackers are considered to have a
limited physical presence [32]. In addition, it seems reasonable to assume that attackers are constrained
to fundamental physical limitations such as the speed of light. Similarly, an attacker cannot in general
receive and jam a message at the same time without the risk that some other receiver also successfully
receives the message. Another issue with the Dolev-Yao model is that it is not designed for the analysis
of attacks on application semantics, i.e., message correctness is not considered, which is the primary
focus of misbehavior detection.

In the literature, some authors have attempted to formalize these attacks and the effects on specific
mechanisms using game theory [44, 57]. These formalizations often make an informal honest majority
assumption, which assumes that a majority of the nodes (or sometimes keys or messages) is honest. The
assumption is sometimes explicitly specified as being about a local neighborhood or the entire network.
A local honest majority assumption is then the assumption that more than half of the nodes in the direct
communication range of a vehicle is honest. This assumption is the most significant limitation of some
classes of detection mechanisms, which we will discuss at length in our literature review in Chapter 2.
Apart from this, we will rely on terminology introduced by earlier work [24, 29, 32, 65].

2.3 Literature Systematization

We now briefly discuss a systematization of the misbehavior detection literature along different lines. As
this classification primarily provides the backdrop for the discussion of the related frameworks in the next
section, we will avoid going into a detailed discussion of specific work. We classify mechanisms by three
different variables: the position in our misbehavior taxonomy, the scope of detection, and the ability to
deal with pseudonyms. Briefly summarized, our taxonomy classifies mechanisms by what the semantics
of their output is (data- or node-centric), as well as whether they consider each vehicle in isolation
(autonomous), or whether they analyze data from multiple sources at the same time (collaborative). The
detection scope asks whether detection occurs within the vehicle (local), cooperatively between vehicles,
or globally. Finally, the impact of pseudonyms is analyzed by examining what level of linkability is
required for the mechanism to work correctly: full, explicit, implicit linkability or none at all.

2.3.1 Taxonomy of Misbehavior Detection

We have designed a taxonomy to categorize mechanisms, consisting of two classification aspects and four
classes, as shown in Figure 2.1.

The first aspect we use for classification distinguishes between node-centric and data-centric mecha-
nisms, which has regularly been used in the literature. For our purposes, node-centric mechanisms are
defined as mechanisms that specifically evaluate the participants of the network, as opposed to the data
exchanged within it. For example, they can verify the forwarding behavior of a node by analyzing packet
frequencies, correctly formatted messages, and so on to decide on its trustworthiness. Similarly, trust
establishment schemes that judge vehicles based on previous behavior or exchange of reputation infor-
mation would be considered node-centric in our taxonomy. On the other hand, data-centric mechanisms
evaluate the trustworthiness of the data itself, as opposed to the trust in nodes. Examples of data-centric
mechanisms include a check on the plausibility of the data (e.g., is the claimed speed within a certain
range) and the consistency of the data (e.g., does the claimed position overlap with that of another
vehicle). Trust establishment schemes that are based on behavior typically use information provided by
data-centric mechanisms, and thus there is some overlap in the authors working in these areas. However,
we split the taxonomy this way because the basis for the decision is separate, and thus the ideas used in
these two classes of detection mechanisms can be seen as orthogonal.

The second aspect we use to classify misbehavior detection mechanisms is the distinction between
mechanisms that analyze messages from a single vehicle (autonomous) and mechanisms that attempt to
deduce misbehavior from multiple vehicles (collaborative). This distinction is best illustrated using an
example from a data-centric mechanism. A misbehavior detection mechanism can analyze a stream of
messages from a single vehicle to detect suspicious behavior, or it can analyze all messages received in
a time slot and detect messages that deviate from the majority. A significant advantage of autonomous
detection is that the mechanism will function independent of any attackers that may be present, while
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Figure 2.1: Taxonomy of misbehavior detection.

collaborative mechanisms rely on the fact that an honest majority exists. We note that autonomous
detection may sometimes include the use of the vehicles’ own sensors (e.g., when determining the approx-
imate source of a radio transmission, or the relative position), which we still consider to be autonomous.
Some consider this approach to be the only one that provides a reliable system. However, the challenge
with autonomous detection mechanisms is that they are often imprecise, and cannot necessarily detect
intelligent attacks that use knowledge of the detection algorithm. This imprecision is best exemplified by
plausibility checks, such as a limit on the claimed speed that is accepted; an intelligent attack can always
attack such checks by choosing values close to the limit. To avoid a large number of false positives,
the limit on the accepted speed should be high enough to deal with outliers (e.g., speeding vehicles),
but low enough to detect malicious behavior. If correctly employed, a set of plausibility checks bounds
the message space available to the attacker, but also provides a space in which the attacker can choose
messages that will be considered valid. This resulting bound can be used by employing collaborative
mechanisms to provide a higher quality of detection than is possible using either approach individually.
Indeed, the field is progressing towards these ideas, as evidenced by several detection mechanisms we
discuss in our survey [142] and in our summary below. Having discussed these classifications, we now
describe the resulting four classes from Figure 2.1.

Node-centric Misbehavior Detection

Behavioral The first branch of node-centric detection is behavioral. This type of detection exploits
patterns in the behavior of specific nodes at a protocol level, where behavior is largely independent
of physical processes. Information considered by these mechanisms includes the amount of messages
transmitted by a node or the correctness of their format. A core aspect of behavioral mechanisms is that
their analysis is focused on a node-basis and typically does not consider data semantics as done by data-
centric mechanisms. An example of a behavioral misbehavior detection mechanism is the concept of a
Watchdog [8] that was introduced for the security of routing in mobile ad-hoc networks. In a Watchdog,
each node monitors the network, listening for retransmissions to verify that its neighbors, which are
supposed to forward messages, actually do so.

Trust-based The other branch of node-centric detection is trust-based. Trust-based mechanisms ex-
ploit the fact that many nodes in the network are honest, and that infrastructure is available to remove
malicious nodes. Trust-based detection includes reputation systems, which rate node behavior over time,
but also voting schemes that allow vehicles to vote on the correctness of information. Trust-based detec-
tion can occur either locally or with infrastructural support. In the latter case, issues regarding privacy
are a serious concern, which we address in Section 2.3.3. Trust-based detection often relies on input from
other detection mechanisms to update the reputation of nodes in the network.

A core advantage of trust-based mechanisms is that they simplify the revocation process. However,
the ephemeral nature of C-ITSs poses additional challenges to trust-based mechanisms, particularly
when determining their initial trustworthiness, as well as the information to update it. Data-centric
detection mechanisms or behavioral detection mechanisms may be used for this: the trust-based detection
mechanism is then used to distinguish between legitimate and malicious behavior. Both reputation- and
voting-based mechanisms have to deal with Sybil attacks [9], where an attacker abuses the reputation
mechanism by creating multiple identities. These attacks can be used to either amplify an attack or
exclude legitimate nodes from the network, and is one of the core research challenges for trust-based
misbehavior detection, especially in combination with privacy requirements. Similarly, if an honest node
suddenly starts misbehaving (e.g., due to a faulty sensor), this will not be detected quickly by reputation
mechanisms.
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Data-centric Misbehavior Detection

Consistency Consistency-based detection uses relations between packets, typically from multiple par-
ticipants, to determine the trustworthiness of newly received data. For example, a consistency-based
detection mechanism may consider a previously computed average speed of vehicles on a highway to
judge newly received messages. Messages that deviate from the average are inconsistent with the known
state and can thus be considered suspicious. Alternatively, pairwise comparison of messages from dif-
ferent vehicles is also considered consistency-based. Consistency-based detection has the advantage that
only limited domain knowledge is required to design reasonable schemes. However, a local honest ma-
jority is often required to draw reliable conclusions: if several colluding attackers surround a victim,
consistency might exclude information from legitimate vehicles.

Plausibility Plausibility-based detection uses a specific underlying model of data in order to verify if
the transmitted information is consistent with this model. For example, plausibility of movement can
be verified from two subsequent beacon messages by examining the distance traveled between them and
comparing it to the speed in these messages. Plausibility-based typically allows for a very rudimentary
but fast analysis of received packets. It is performed by considering packets from individual senders. The
information in the packet is either tested against a prediction of the model, or the model is used to judge
whether the information in the packet is a plausible next step according to the model. Because there is
an underlying model, the mechanism can directly express the plausibility of the message in a probability,
which can be input for further misbehavior detection mechanisms. The models used for plausibility vary
from narrowly defined models like the laws of physics up to models that allow a wide range of variation,
such as a model that predicts driver behavior. The narrowly defined models can be effectively used to
filter incoming packets for “impossible” messages that can be discarded directly. A major advantage of
plausibility-based detection is that the mechanisms are always applicable, even when an honest majority
does not exist. A significant disadvantage is that a model of the underlying data is required, and the
utility of the mechanism depends directly on how accurate this model is.

As is the case for node-centric misbehavior detection mechanisms, data-centric detection mechanisms
have also been used in MANETs [100], which has seen continued developments as VANETs and C-ITSs
have advanced. For example, Fiore et al. [100] present a set of data-centric detection mechanisms that
also fall in the category of position verification. However, in this thesis, we concentrate on designs
specific to VANETs and C-ITSs. The primary difference between these is that the application behavior
and protocol designs are different. For example, Fiore et al. [100] discuss the use of a neighbor verification
protocol that can be used for cooperative position verification. Such protocols can be complementary to
the work done in the context of C-ITSs; for this thesis, we conservatively assume that such protocols are
infeasible.

2.3.2 Scope of Detection

A second classification of detection mechanisms is illustrated in Figure 2.2, categorizing by the scope of
detection: local, cooperative or global. Local detection refers to detection that checks internal consis-
tency, and optionally the vehicles’ sensors, as measures for correctness. Cooperative detection relies on
collaboration between vehicles (and possibly some RSUs); note that this is distinct from the collaborative
component in our taxonomy. Finally, global detection refers to detection that occurs at least partially
with support from a back-end system. This terminology is used throughout the literature describing
the different mechanisms, although some distinctions exist as to what constitutes a cooperative setting,
relating to the number of attacker-controlled vehicles that are in a specific region.

Most detection mechanisms in the behavioral and plausibility classes operate purely locally, which
makes them invariant to Sybil attacks. However, this also makes it difficult to identify the attacker, or
even the attack, due to the low amount of available information. Some consistency-based mechanisms
also operate locally, by comparing series of beacons from several vehicles, exposing them to Sybil attacks,
in exchange for a much more fine-grained approach to detecting attacks.

On the other hand, there exist schemes that perform detection cooperatively: these are typically
consistency- and trust-based detection mechanisms. These detection mechanisms often rely on an honest
majority and exchange messages between participants to detect inconsistencies or untrustworthy partic-
ipants. Particularly, trust-based detection is based on cooperation between nodes; most schemes that
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Figure 2.2: Different scopes at which detection mechanisms can operate.

operate as a reputation mechanism incorporate a mechanism to perform reporting and/or revocation,
both cooperatively and globally, as this is typically a straight-forward extension of reputation. Although
we primarily focus on detection, the ability to perform revocation implicitly within the vehicle is a useful
property.

2.3.3 Impact of Pseudonyms

As mentioned previously, pseudonym systems can have an impact on the types of misbehavior detection
that can be performed. In particular, pseudonym schemes aim to hinder linkability of different infor-
mation items. Linkability is an important aspect of many models used for misbehavior detection, and
sometimes even critical for safety applications. We propose four simple classes that we will use to classify
detection mechanisms in our survey: full, explicit, implicit and no linkability, which are briefly explained
below. For more details on the subtleties of pseudonyms in C-ITS, see Petit et al. [134].

Full linkability means that all messages transmitted by the same on-board unit (OBU) can be linked,
i.e., there is no pseudonym change at all, and thus essentially no privacy. All possible misbehavior
detection mechanisms can be realized at this level and some types of misbehavior detection even require
this level of linkability. Examples of such schemes include most trust-based approaches [64, 76].

Explicit linkability refers to any type of linkability that allows direct access to an identity. This
means that linking is technically possible; however, there are several ways to implement this. The issued
certificate can either contain the identity in an encrypted form, a direct mapping from certificates to
identity can be stored in the back-end, or this mapping may be split across multiple entities through
separation of duties. Using each of these classes, it is technically possible to link pseudonyms, but this
capability is limited by the pseudonym scheme.

Encrypting an identity in the certificate is an attractive approach, because there are cryptographic
schemes that enable conditionally revealing this identity (e.g., PriPAYD [83], or double spending pre-
vention in electronic payment systems). However, it is not clear whether this can also be applied for
misbehavior detection, especially if revealing the identity should happen locally. This system also requires
that detection mechanisms are standardized, and in most cases part of the certification infrastructure,
which is an unrealistic assumption. Using a back-end mapping is a solid alternative to this approach, in
terms of implementation effort. Here, each certification authority simply stores the relationship between
pseudonyms and real identities, revealing malicious users as needed. This is particularly useful when
combined with direct back-end connectivity, either through RSUs or another technology, such as univer-
sal mobile telecommunications system (UMTS) or LTE. However, this requires full trust in the back-end
system, as it can revoke the privacy of the users. Another advantage is that a back-end could perform its
own misbehavior detection, and exploit the significantly higher computational power available to it [89].
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A middle way between these two types is separation of duties, which also stores the link between two
pseudonyms, but spreads the information necessary to reveal a user across organizational boundaries.
VToken [59] and Butterfly Keys [109] are different proposals that achieve this; overall it seems that
industry and academia both prefer separation of duties over purely technical solutions, which require
the cooperation of the revoked device (as is the case for PriPAYD, for example). The core advantage
is that the separation of duties allows individual decisions on a case-by-case basis, if needed. However,
for misbehavior detection, this means that linkability between pseudonyms cannot be achieved locally
in the vehicle, but only on an organizational level. The advantage is that confirmed misbehavior can be
acted upon immediately, and some mechanisms may be able to detect attacks by using a partial linking
protocol to perform specific checks for messages that are suspicious if the pseudonyms would belong to
the same identity (or vice-versa).

Implicit linkability or inference allows pseudonym linking even when no mechanism for direct identi-
fication or linking is available. There are three different sources of information available for this purpose:
certificates, message content and signal properties during transmission. Using this information, partial
or complete identities may be derived, although there is no guarantee that such a linking approach will
always be able to identify every vehicle. For example, certificates typically contain attributes of a vehicle,
such as length, height and color. These properties allow full identification of unusual vehicles on the road,
such as a yellow limousine, but not the identification of several black vans of identical make. Although
this is an example of linking based on certificate content, this type of limitation applies to all inference-
based linking, and while it can be bounded by combining different types, it will have implications for
misbehavior detection.

Secondly, implicit linkability does not fundamentally provide linkability through an identity, but
through similarities in messages. Implicit linkability only provides links between messages, which will
allow a receiving vehicle to create ’pseudo-identities’ for groups of pseudonyms that are considered to
be the same vehicle. This makes it more challenging to exchange information about particular vehicles
with other participants, and can also make it difficult to verify misbehavior and revoke the misbehaving
vehicle. Nevertheless, many misbehavior detectors will need to function under these assumptions, as they
provide the most realistic environment in which individual vehicles have to perform misbehavior detection
(as opposed to detectors in the back-end). Examples of inference-based systems include virtually all
data-centric security mechanisms. For signal-based inference, the work by Guette & Ducourthal [21] and
Xiao et al. [20] are good examples, while for inference on message content, a good example is the Kalman
filter [61, 82]. Inference based on certificates is a relatively new idea that is sometimes captured within
inference through messages, and is not commonly considered because it conflicts with the assumption that
these certificates are intended to be pseudonymous or anonymous towards other participants. Therefore,
they are typically assumed not to reveal this information, making such detection mechanisms obsolete.

No linkability is the idealized scenario in which it is impossible to determine whether two messages
originate from the same or from distinct vehicles. Although this results in maximum privacy, such a
scenario makes it nearly impossible to provide any working C-ITSs applications, let alone securing them.
For example we can still attempt to perform misbehavior detection on individual messages. The goal of
such an analysis is to detect unusual or inconsistent messages, which either contain obviously incorrect
values: this includes unrealistic values (speeds of 500m/s) and values that do not match the perceived
scenario (speeds of 50m/s in a traffic jam). The value of such detections is limited from a security point of
view, but filtering malicious packets may still be beneficial for applications. Beyond that, not much more
is possible: at this level of linkability, the inability to detect Sybil attacks makes it extremely difficult,
if not impossible, to build a structured detection mechanism. Unfortunately, this means that there is a
necessary trade-off between privacy as opposed to security and functionality – necessarily, we are forced
to sacrifice theoretically perfect privacy in order to gain functionality and security. However, we remark
that even in this scenario, tracking is possible by simply following a vehicle. Because tracking vehicles
by following them individually is unavoidable, it serves as a good baseline against which privacy can be
tested. Detection schemes that require no linkability will definitely not negatively impact the privacy of
the system.
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2.3.4 Detection Approaches

Within the taxonomy, several sub-branches can be identified that relate to the specifics of each detector,
such as what data the decisions are based on. The sub-branches discussed here are developed based on
the literature listed in Tables 2.1 and 2.2; a detailed discussion of each individual scheme is provided in
our survey article [142, 170].

Data-centric detection: Plausibility

Plausibility checks can be used to quickly and efficiently filter packets that are malicious. Typically
simple instances of these mechanisms are assumed to exist by node-centric schemes in order to provide
a way to determine trustworthiness of nodes. However, plausibility checks can also be used as a more
advanced tool to determine a numeric plausibility value, rather than just filtering out bad packets. For
example, one can analyze the speed or location of a vehicle over time, a receiver can identify its path and
attempt to identify suspicious paths. Plausibility checks are often used to detect attacks that involve
Sybil nodes, as such situations still require that the attacker transmits from approximately the same
location, despite the usage of many different identities.

Signal-based plausibility One of the first applications for data-centric misbehavior detection was the
identification of falsified positions by exploiting channel properties. By detecting the source direction
of the signal and using time-of-flight, vehicles can attempt to verify the position contained within a
CAM. An overall challenge of these approaches is that the error of measurements outside a controlled
environment are very high [20], which is why these schemes are often combined with other approaches.

Multi-rule plausibility Another early idea was to use several sources of information to verify message
validity, rather than just using signals to verify a position, which was sketched in [13] by Leinmüller et al.,
who later proposed a framework named VEBAS (see Section 2.4.1). The authors introduce the concept
to use on-board vehicle sensor data and data from different layers of the communication system to build
a world model, with which newly received information can be compared. Many of these multi-rule
mechanisms also include some form of other detection mechanism, but often the focus lies on taking
advantage of the many fast and simple checks that can be performed through plausibility checks.

Position Prediction As discussed in Section 2.3.4, the advantages of node-based mechanisms are
strengthened when pseudonyms can be resolved, or at least linked, in the local vicinity of a vehicle.
Position prediction essentially uses such techniques to predict behavior of vehicles and verify whether
they follow an expected pattern. Although the Kalman filter is the most common approach, alternatives
include the use of particle filters, as discussed by Bißmeyer et al. [88], and zone prediction, as discussed
by Barnwal et al. [87].

Post-event detection The idea of post-event detection is that events are not isolated from each
other, but typically relate directly to future behavior. A good example of such a scheme is the work by
Ghosh et al. [49], who looked at the post-crash notification (PCN) application. After sending a PCN
message, drivers normally adapt their behavior to avoid the crash site; this is exploited here to confirm
whether the event was valid or not. Although this specific scheme uniquely uses driver behavior for
validation, other proposals have been made that use subsequent beacons to verify whether an event
actually happened (e.g., Ruj et al. [79] above). In their scheme, Ghosh et al. [49] use a technique called
root cause analysis to detect which part of the event message was false. Although lacking in privacy,
this scheme is very useful to serve as a baseline for revocation. However, it may struggle if sufficiently
complex models of driver behavior are not available, and it notably cannot prevent false information
from reaching the driver, which may lead to low user acceptance.

Data-centric Detection: Consistency

Consistency-based mechanisms look at packets or message sequences originating from distinct vehicles.
These mechanisms focus on detecting and resolving conflicting information to achieve an accurate rep-
resentation of the real world scenario. They are often employed by secure aggregation mechanisms to
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Table 2.1: Data-centric detection approaches. The two categories marked Data Trust-based determine
the trustworthiness of events based on both node- and data-centric trust; the same techniques could be
used to establish trust in nodes.

Detection Technique Category Examples

Signal-based plausibility Plausibility Guette & Ducourthial [21], Ruj et al. [79], Xiao et al. [20]
Multi-rule plausibility Plausibility Leinmüller et al. [30], PVN [23], VEBAS [35], Yan et al. [37]
Position prediction Plausibility Jaeger et al. [73, 82], Bißmeyer et al. [88], Barnwal et al. [87]
Post-event validation Plausibility Ghosh et al. [49]

Raw data comparison Consistency Bißmeyer et al. [45], Zaidi et al. [149], Grover et al. [70], Leinmüller et al. [30]
World modeling Consistency Golle et al. [12], Dietzel et al. [46], Bißmeyer et al. [89]
Rule mining Consistency VARM [77]
Machine learning Consistency Grover et al. [71]
Sensor sharing detection Consistency Yan et al. [85]
Decision logics Data Trust-based Raya et al. [33], Rawat et al. [76]

combine information from several vehicles into aggregates and to deal with inaccuracies, which may occur
when aggregation mechanisms are used.

Raw data comparison The simplest type of consistency mechanism is direct comparison between
message contents to check them for conflicts. This is closely related to consensus mechanisms from the
node-centric mechanisms section: the mechanisms here are distinguished by the fact that a decision
is mainly based on the data, rather than trust (potentially derived from data) in vehicles. Unlike
consensus mechanisms, direct checking mechanisms often simply output that a conflict exists (although
some authors add some trust mechanism to verify the effectiveness of their scheme directly).

World modeling Rather than comparing raw data, some authors suggest the more abstract approach
of world modeling. In world modeling, the idea is to store all received data and keep all the conflicting
information in a database. This removes the restriction of comparison between specific messages, and
rather allows queries such as “is this world state consistent?” or “is this hypothesis true”? For detection,
these approaches often aim to find the data that is the cause of a conflict in the consistency of the model.

Rule mining Finally, some authors have proposed mechanisms that use techniques from the field
of data mining to extract useful information from a large amount of stored data, such as CAMs and
DENMs. By extracting these rules, the likelihood of the message being valid can be expressed.

Machine learning One other area that has gained recent interest throughout security is the appli-
cation of tools from the area of machine learning. Although we feel that machine learning will likely
have its place in our field in the long term, we remark that the blind application of machine learning
techniques to detect attacks is not a reliable one. Recent work on adversarial machine learning has
shown that the current situation is volatile [161], and older work from the area of intrusion has already
indicated that real-world performance of machine learned detection has not lived up to expectations [60].
As vehicular networks are still a class of networks that is under development, there is a significant lack of
reliable available datasets [172]. Since the detection performance of machine learning models is typically
bounded by the input data quality and availability, this suggests over-fitting might be a significant issue.

Decision logic To establish the trustworthiness of vehicles, which is used as input by the reputation
mechanisms discussed above, authors often use a decision logic. These mechanisms are on the border
between node-centric and data-centric, as they use techniques from trust management to determine
the trustworthiness of events. The techniques of decision logics are different from most other data-
centric mechanisms in that they are much more generic and not bound to a specific data type, and the
combination with node-centric evidence is much easier.

Node-centric detection: Behavioral

Behavioral mechanisms are focused on the behavior of a particular node. This mainly concerns packet
headers and meta-information like message frequency. Behavioral schemes in C-ITSs typically focus on
identifying nodes which send messages too frequently or nodes which modify the message content in
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Table 2.2: Node-centric detection approaches.

Detection Technique Category Examples

Watchdogs Behavioral Hortelano et al. [51]
Flooding detection Behavioral Hamieh et al. [39], Puñal et al. [93]

Central Sybil detection Trust-based Chen et al. [38], P2DAP [86], and Footprint [90]
Node validation and reputation Trust-based LEAVE [25], OREN [64], SLEP/PRP [43]
Event validation and consensus Trust-based PoR [27], z-smallest [72], Leinmüller et al. [56], CoE [53], Petit et al. [75]

a way that does not adhere to protocol standards. As these attacks are not fundamentally different
from attacks that some classes of network intrusion detection mechanisms aim at, there are not many
C-ITS-specific schemes available. Behavioral mechanisms are especially popular to protect networks
where routing attacks and fairness play an important role, such as MANETs; some of these misbehavior
detection mechanisms have been adapted to work in C-ITSs scenarios.

Watchdogs Watchdogs are the primary example of behavioral misbehavior detection mechanisms, as
discussed in Section 2.3.1. There are many proposals that adapt the original Watchdog mechanism
for specific requirements of C-ITSs, because they have the advantage that they are fully independent
of transported content. However, they can clearly only be applied in settings where multi-hop com-
munication occurs (either through routing or flooding-style approaches). One such work is that of
Hortelano et al. [51], who set out to evaluate the usefulness of the traditional Watchdog mechanism for
C-ITSs. The core assumption is that routing is standardized, and vehicles can predict the (expected)
behavior of their neighbors. To accommodate packet collisions and noise on the wireless medium, the
required number of re-broadcasts is lowered by a certain threshold (called tolerance threshold), to reduce
the number of false positives, similar to the MANET case. In addition, the importance of older results
degrades more quickly over time, to account for the increased mobility (the authors call this devalua-
tion). Once the Watchdog detects malicious behavior, it is logged in a local file, but reports are not
forwarded to other vehicles or a centralized instance. Their evaluation shows that it is difficult to find
a global threshold for deciding at which point misbehavior should be detected; setting this threshold
dynamically could lead to a higher accuracy. In addition, we note this paper does not address privacy,
making the true suitability for C-ITSs unclear. As pointed out by the authors, several vulnerabilities
remain; additionally, there is no protection against Sybil attacks. We note that in our more general
attacker model, the attacker could use selective jamming in addition to further amplify several attacks,
which would further reduce the performance of this scheme.

Flooding detection In addition to mechanisms that are designed to detect attacks on routing, there
are mechanisms that detect a related class of attacks: flooding and jamming. Although Watchdogs
are capable of detecting some types of flooding, we create a separate category for detection algorithms
that detect other types of flooding, such as jamming and MAC attacks. In contrast to Watchdogs,
Hamieh et al. [39] describe a detection mechanism for jamming attacks specifically, based on detecting
patterns in radio interference. They focus on a particularly difficult type of jamming attack, where the
attacker behaves intelligently and jams only specific messages, rather than constantly jamming the entire
channel. The attacker listens to the channel and jams specific messages as they are seen on the channel,
which is known as selective jamming and is significantly harder to detect. Hamieh et al. propose that a
correlation coefficient between correct reception time and time where reception errors occur can be used
to determine a degree of jamming. However, since reception errors can occur randomly, the medium can
only be considered jammed if the correlation is unusually high. A deeper discussion and classification
of jamming attacks is provided in a later work by Puñal et al. [93], which discusses different types of
jamming attacks and analyzes their feasibility. In particular, they show that some types of jammers are
capable enough to prevent communication altogether with high probability, illustrating the necessity of
jamming detection.

Node-centric detection: Trust-based

Similar to behavioral mechanisms, many trust-based mechanisms for C-ITSs are rooted in mechanisms
that were developed for MANETs. These partially evolved from mechanisms such as the Watchdog [8]
(discussed in the previous section), which provide metrics to establish the trustworthiness of a node.
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To aggregate this trust, distribute it among nodes, and provide it to a back-end system, a mechanism
is required that not only filters malicious nodes as quickly and efficiently as possible, but also prevent
attacks on the mechanism itself. For example, Pathrater [8] aggregates the Watchdog results, but it may
be attacked through Sybil attacks (as the authors also discuss). Core issues for trust-based mechanisms
are Sybil attacks on the one hand, and high mobility and brief connectivity on the other. These challenges
are much stronger in C-ITSs, as the connectivity between vehicles is sporadic, and privacy requirements
lead to a vehicle being allowed to use multiple identities. This is especially significant when conflicting
information is received from two sources that are either equally trustworthy, or both unknown up to this
point. To account for these challenges, authors often propose the use of data-centric mechanism output,
which they then integrate into the trust-based mechanism; we will discuss these approaches towards the
end of this section. We include these mechanisms here, because the primary focus is the development of
the trust management, and not the data-centric detection process. There are also dedicated surveys for
trust schemes to be found in the literature, such as the work by Rivas et al. [78].

RSU-supported Sybil attack detection There are many schemes that operate using a centralized
authority to detect Sybil nodes. The approaches we describe here are based primarily on interactions
between infrastructure and vehicle; by grouping vehicles based on the RSUs they interact with, the
assumption is that the Sybils of an attacker will always follow the same interaction path as the attacker.

Node validation and Reputation Following are multiple papers specifically aiming at mechanisms
that use explicit voting. Here, voting is used to decide which nodes are (not) trustworthy. These are
distinct from consensus schemes, which use identities to vote on whether or not a claimed event is true;
such schemes are discussed below. Voting mechanisms strictly require protection against Sybil attacks,
and those attacks are thus usually not part of the attacker model.

Event validation and consensus A common challenge in trust-based mechanisms is the application
of trust over multiple hops. Event validation addresses this question by allowing each vehicle to use
their identity as a vote in support of or against a specific event. Similarly, consensus mechanisms do the
same, but often relate more closely to data-centric mechanisms (e.g., agreeing on specific data, rather
than events, or including data-centric detection results).

2.3.5 Early Framework Proposals

Having discussed different directions for detection, we now briefly revisit earlier ideas to create frameworks
for misbehavior detection, before discussing more complete proposals in detail.

Detection and Correction of Malicious Data

Golle et al. [12] have presented the earliest example of data-centric detection, which checks for consistency
between assertions (messages, also called observed events in the paper) using some abstract model of the
C-ITS. If this results in an invalid state, their system identifies possible explanations where a subset of all
assertions is valid – the best explanation can then be chosen. The model relies on four core assumptions:
nodes can bind observations to received communication, they can uniquely identify neighboring vehicles
(that is, detect Sybil attacks using physical properties), they can authenticate to one another, and
finally, the network graph should always be connected. In case inconsistencies are found, Occam’s Razor
is applied, meaning that the explanation with the least amount of attackers best explains the conflicts
found. As an example of how their model works, the authors introduce two models that determine the
correct locations of vehicles in the network. Although this is one of the earliest works on data-centric
security mechanisms in C-ITSs, the outline of their mechanism is still used as a guideline for data-
centric security and secure aggregation schemes. Unfortunately, the detection component of this work
is not evaluated for feasibility, due to an assumption that neighbors can immediately exchange derived
information. As the original authors note, assuming this kind of connectivity is not very realistic, as the
amount of data exchanged in their scheme is quite high and available bandwidth in C-ITSs is limited.
Other challenges in actually deploying a system such as this include the fact that some meaningful
hypothesis generation needs to be implemented, and the potentially massive computational requirements.
Finally, the model over-simplifies some of the world: for example, it is possible that attackers generate
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messages that are consistent with the model of each receiving vehicle, but that still achieve the goal of
the attacker. This is because, for example in terms of false positions, a lot of malicious observations do
not necessarily conflict with any other observations. When combined with a Sybil attack, the decision
based on Occam’s Razor may even lead to incorrectly labeling legitimate vehicles as malicious. This is
particularly problematic in low-density settings.

Plausibility Validation Network

Lo & Tsai [23] present a plausibility validation network, which aims to detect a type of data injection
attack called the illusion attack, where the attacker injects false information into the C-ITSs. To protect
against this attack, the authors propose a plausibility validation network (PVN), which consists mainly
of a checking module and a rule database. The rule database contains a set of rules that govern whether
certain information should be considered valid or not, by analyzing the individual message fields. The
authors provide a list of such rules to detect fake vehicles, which includes dropping of duplicate messages,
the position being in transmission range, valid time stamps and others. The set of rules is different per
message type, and is default-deny (i.e., all rules must accept the message). In some ways, this is similar to
later approaches taken by frameworks discussed in the next section; however, the type of rules specified
is quite different. For example, PVN’s rules are much more focused on things such as duplicate messages
and hop count; the plausibilities of location, time stamp and velocity are relatively loose. Location
plausibility is defined primarily through hop count (specifically, the distance traveled by the message
must be further than the distance between the event and its sender). In many ways, the idea is thus
similar to that of VEBAS; use a broad scope of detection mechanisms to detect every attack in isolation,
rather than trying to build a single system that can detect any deviation. Unfortunately, this paper does
not provide any evaluation of these rules.

2.4 Related Frameworks

2.4.1 Vehicle Behavior Analysis (VEBAS)

The work by Leinmüller et al & Schmidt et al [17, 30, 35] presents a wide collection of primarily data-
centric position verification mechanisms. In their work, the authors differentiate between different classes
of verification mechanisms, including autonomous mechanisms (referred to as plausibility in this work),
cooperative mechanisms (referred to as consistency in this work), behavioral mechanisms, and a simple
fusion and trust evaluation scheme. Their system evaluates incoming messages sequentially, accepting
or discarding messages as they come in. The authors later also split their mechanisms in positive and
negative checks, where the decision states that the message should be accepted or rejected, respectively.
The authors use an exponential weighted averaging to combine the individual outputs of each mechanism
(which is numerical and either in [0, 1] or [−1, 0] depending on its type). The resulting local aggregate is
considered a trust value in VEBAS, which is periodically broadcast to one’s neighbors as the local trust
in the associated vehicle. This can then be fused with all trust perceptions received from other vehicles
to determine the trustworthiness of vehicles. However, the authors point out that the raw fused output
should be used to make decisions on messages, and not the fused trust (i.e., local aggregate). This is
because the latter may be manipulated by other vehicles, potentially making the system vulnerable to a
variety of reputation attacks.

The authors’ work includes the following behavioral, plausibility and consistency mechanisms as input
for their trust of neighboring vehicles: Acceptance range threshold (ART), mobility grade threshold
(MGT), maximum density threshold (MDT), minimum distance moved (MDM), map-based plausibility,
position claim overhearing, maximum beaconing frequency (MBF), pro-active neighbor exchange, as well
as positive and negative movement validation. ART provides a very simple check that discards messages
with position claims that are far outside the communication range of the receiver, and thus likely contain
a falsified position. MGT checks the distance moved between two beacons for suspiciously high speeds.
MDT examines the maximum amount of vehicles in a particular area; when too many beacons are sent
from one area, the vehicle ignores further beacons from the same area, in order to limit the impact of
Sybil attacks. MDM checks whether a vehicle has moved a minimum distance in a certain time frame,
which is designed to detect road-side attackers. Map-based verification assigns a plausibility value to
the received beacons by comparing the location to a road map. Position claim overhearing is specific
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to (geo)routing scenarios: by comparing different overheard packets and their destinations, overheard
packets can provide indications of a false position in the past. MBF: if a vehicle sends messages with
an unusually high frequency, the behavior can be regarded as a possible attack. Pro-active neighbor
exchange assumes vehicles periodically broadcast their 1-hop neighbor information, which can then be
used to validate messages in more detail. Positive and negative movement validation respectively check
whether the movement observed from a vehicle is realistic (positive) or abnormal (negative).

The authors combine the outputs of a detection mechanism over time by using the exponentially
weighted moving average (EWMA) method. Here, older information is integrated with less weight than
fresh information, and different weight can be given to different modules. How time is made discrete is
not elaborated upon; the most reasonable assumption is that the expected message interval (i.e., defined
by the beaconing frequency) is used to represent one interval over which a decay is made. The resulting
output is fused through simple addition: this is possible due to the way that the different modules are
attuned to one-another. The fused result decides the legitimacy of the message, and it can be used
to generate trust. This includes the possibility to send and receive reports from other nodes in the
network (which adds a trust-based element to the mechanism): once a vehicle has accumulated a defined
amount of information about surrounding node behavior, it will broadcast the results within the 1-hop
neighborhood. However, these recommendation reports are not trusted blindly by receiving nodes to
prevent attackers from broadcasting fake positive behavior reports.

VEBAS provides detection for relatively specific attacker classes, such as a road-side attacker, which
is a malicious entity that uses stolen credentials to its benefit (e.g., attacking message routing, or other
position-related attacks). Although the author’s results appear to be very good, we believe there is room
for significant improvement in the strength of the attacker model, as well as the overall evaluation. In
addition, this approach could be extended significantly to include detection of other types of attacks,
such as those on aggregated data. One significant benefit of this work is that the proposed idea can
behave in a privacy-preserving manner, as long as locally related messages can be temporarily linked
(i.e., Mix Zones [134] can be overcome locally).

2.4.2 Multilayered security and privacy protection in Car-to-X networks

In their thesis [108], Hagen Stübing proposed a framework for mobility data verification in the local
neighborhood of the vehicle. The primary goal of this work is to support local tracking of nearby
vehicles, which is important for safety applications. To this end, the authors propose a framework
designed around a well-studied concept from the field of engineering: the Kalman filter. This filter was
originally developed for missile tracking [10] and has since found applications in GPS location estimation.
The basic idea is that a linear state estimation is performed on location and speed information, whose
error converges to zero under linear acceleration behavior of the tracked object (i.e., in this setting, a
vehicle). This is done by assuming normally distributed noise (around 0) for both sensing and state
transitions. The core idea in Stübing’s work is that the Kalman filter can be used to estimate real states,
and therefore detect attacker states and erroneous states by comparing estimated states to the next
received state (i.e., the next beacon message). By applying additional checks, one can filter out beacon
messages that cause the estimated state to deviate from the real state. On the other hand, vehicles
may at some point change their pseudonym, causing a receiver to perceive them as a new vehicle: this
is resolved through the use of the Kalman filter as well. To further improve accuracy, it has also been
suggested that a maneuver recognition should be integrated into the framework, which allows for the
detection of highly non-linear movements (e.g., breaking, lane changes or sharp turns). An overview of
their framework can be found in Figure 2.3.

Stübing et al. [61, 73] verify transmitted CAMs by analyzing the sequence of messages to find the
trajectory of each vehicle. By tracking a vehicle using a Kalman filter, they can verify the location
contained within each CAM, thereby allowing the detection and correction of falsified data in CAMs.
This works, because Kalman filters allow the accurate prediction of movement even under the influence
of errors (e.g., they are also used to correct errors in GPS measurements). As a result, a Kalman filter
allows vehicles to locally link pseudonyms with high probability, and features adjustment for errors and
new vehicles. By defeating pseudonyms in this way, vehicles can check that vehicles are transmitting
valid messages. This scheme explicitly does not distinguish between malicious and faulty nodes, instead
aiming to detect any misbehavior. We note that the existence of Kalman filters does not imply that
privacy is void – the Kalman filter only provides accurate estimates when actually following a vehicle
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Figure 2.3: Stübing’s framework, as illustrated in [82]

(similar to physically following it by driving behind it). The scheme was later extended [82] to deal
with situations where Kalman filter accuracy is poor, such as lane changes and other special maneuvers.
After computing the plausibility of a CAM according to the Kalman filter associated with the sender,
they propose a scheme that probabilistically recognizes the maneuvers of a vehicle using hidden Markov
models. A hidden Markov model is trained for each maneuver, classified by the Baum-Welch algorithm,
allowing the state of the hidden Markov model to represent the different steps in the maneuver. The
information used for these models is then used to update the Kalman filters where necessary.

2.4.3 Data-Centric Trust in Ephemeral Networks

In their thesis [40], Maxim Raya looked at a variety of different aspects of ephemeral networks, which
VANETs as one of the prime examples. Unlike previous work, this thesis is much more focused on trust
aspects: in the proposed framework, decisions are generally made based on node information. Therefore,
a significant part of the work is a series of contributions related to trust networks, analyzing these with
game-theoretic models. The one part of the work that analyzes data-centric trust establishment [33],
which uses both data- and node-centric elements to determine the trustworthiness of nodes.

Raya et al. [25] have also been among the first to present a system for locally evicting nodes, including
the possibility to perform global revocation as a result using a protocol called LEAVE. Here, vehicles
exchange accusations about potential attackers; as soon as a threshold is reached, a vehicle is evicted
temporarily. The set of accusations can be distributed in an aggregated message, which can be used
to immediately ignore a vehicle, and used as a tool for global revocation once it reaches the certificate
authority (CA). A core advantage of this approach compared to reputation systems is reduced detection
latency, because trust does not need to be built over time in LEAVE. The authors argued that local
eviction is especially suitable for vehicular networks because of the low communication overhead and
quick reaction time to attacks compared to global revocation. However, global revocation based on
analysis of the collected local reports is foreseen as an orthogonal countermeasure against persistent
attackers. Some disadvantages of the scheme is that it may be vulnerable to Sybil attacks and may have
privacy issues, depending on the type and implementation of the pseudonyms that are used.
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Raya et al. [58] and Bilogrevic et al. [44, 64] have presented closely related game-theoretic approaches
to combine their eviction scheme from [25] with a suicide mechanism similar to that of Zhuo et al. [43],
combining the previous approaches. Here, a suicide action results in the immediate revocation of both
accuser and accused by all receivers of this action. Apart from this action, vehicles have the alternative
to vote by transmitting an accusation, or abstain from the protocol completely. Each of these actions
is associated with a certain cost, where suicide has the highest cost. In addition, cost values take into
account the fact that abstaining from any action for longer periods of time will leave the attacker more
time to do harm to the network. Using game theory, each vehicle decides when and whether to take
which action in order to minimize the cost for all participants using a variety of strategies.

Criticizing a number of existing revocation schemes including the aforementioned papers, Liu et al.’s [57]
goal is to identify the limits of such schemes in vehicular networks. One of the main points argued in the
paper is that a local honest majority, an assumption made by the revocation schemes discussed so far,
is not as likely as the previous authors argued. If an attacker manages to create a local majority, they
can create false accusations and falsely remove honest vehicles from the local communication network.
If pseudonyms are used to protect user privacy, the authors considered it feasible for an attacker to use
multiple pseudonyms in parallel to create such a local majority. A general conclusion for all voting-based
schemes – both for revocation and other decisions – is thus that the parallel use of multiple pseudonyms
should be prevented by the underlying pseudonym mechanism used. Moreover, Liu criticized Raya et al.’s
game-theoretic approach discussed above, arguing that the assumption that each vehicle acts in it’s own
interest might be flawed, because the software running on the vehicles is not programmed by the vehicle
owner themselves, but by its manufacturer. The authors note that manufacturers may optimize their
own cost functions, which could invalidate the game-theoretic results that were obtained by assuming
that all vehicles optimize their individual costs.

To establish the trustworthiness of vehicles, which is used as input by the reputation mechanisms
discussed above, authors often use a decision logic. This is similar to traditional trust network approaches,
which are typically adopted for this purpose. Raya et al. [33] present one such adaptation, which uses
both data-centric and node-centric information to establish trust in specific nodes. However, the final
decision is made by deciding on the overall trustworthiness of a node, rather than deciding the individual
trustworthiness of messages. The authors used a combination of three different factors to evaluate trust in
nodes: default trustworthiness, which is based on the type of certificate (e.g., police cars); event- or task-
specific trustworthiness, which matches the type of vehicle to the event; and dynamic trustworthiness,
which captures message-specific information like proximity to the event. Once each factor is computed, it
is combined with the data-centric information and only then does the decision logic decide whether or not
to trust the given node. The authors evaluated a number of different decision logic implementations, but
stated that no single mechanism performs best in all simulated configurations. However, the Dempster-
Shafer inference [1, 2] was identified as the most promising technique. This aspect will be discussed in
more detail in the fusion and trust chapters of the thesis. Some of these authors have continued this line
of work, and applied DST to the domain of participatory sensing [131].

2.4.4 Misbehavior detection and attacker identification in vehicular ad-hoc
networks

Norbert Bißmeyer, in their PhD thesis [111] also studied the area of misbehavior detection. In their
thesis, the focus was more broad than our thesis: it aimed at the detection of intrusions, as well as global
revocation by identifying the attacker. To this end, the authors proposed a detection scheme for specific
attacks (the overlapping position scheme), and extend this scheme in various ways to deal with position
errors, as well as local vehicle tracking to improve performance. The scheme is also combined with
attacker identification through trust mechanisms, which are then used for revocation. The revocation
process uses an evidence-based approach [97], which served as an inspiration for the proposal made in
our work to deal with reporting in a similar way [157].

In [45], the authors use consistency between CAM messages of vehicles to detect attacks. The
authors claim that a model typically used for crash avoidance systems can also be used to determine
likely attacks. The model describes that only one vehicle can occupy a given space at a given time. This
allows detection of falsified position information. They assume it is possible to uniquely identify vehicles
despite the use of pseudonyms (using the Kalman filter approach we discussed in the context of Stübing’s
work in Section 2.4.2) and use this capability to determine whether vehicles intersect. Intersection itself
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is measured using the given width and length of a vehicle in a CAM. A mechanism to deal with errors
is also introduced, by simulating larger rectangles outside the bounds of the vehicle. The size of each of
these is computed using the speed of the vehicle. When detecting overlap of rectangles around different
vehicles, a degree of certainty corresponding to the size of the rectangle is used. The higher this certainty,
the higher the probability that the position for one of two vehicles was falsified. To compensate for lost
packets, the authors also discuss a prediction mechanism to predict the location from which the next
CAM is sent. To further increase detection accuracy, the authors note that a history of received CAMs
and predictions can be used to compute a vehicles’ trustworthiness; this trust value can then be used to
decide which of two CAMs is the correct one. This scheme is highly efficient in terms of bandwidth, but
the accuracy of the detection may be limited due to the effects of noise in the sensors. Although Sybil
attacks are an issue for this work, the authors can deal with some degree of packet loss as well.

In their next work [89], the authors propose a more strongly centralized approach. They require each
node to detect incidents, and forward them to a central authority that will detect misbehavior based on
these reports. Because the central authority only needs to perform detection based on reports, rather
than continuously for all nodes, this provides a scalable approach. In addition, this makes the assumption
of an honest majority reasonable, when combined with revocation. Each node assigns trust to all nodes it
knows; confidence in this trust is defined as a weight on the trust assigned by another node. For example,
if node a has neighbors b, c and assigns a high trust to b, while b assigns a low trust to c, then confidence
is used to describe the amount of evidence each node has for its trust assignment. These parameters are
later used to determine reputation of each node by the central authority. The central authority can then
resolve pseudonyms and determine whether any node was cheating repeatedly, or whether there was a
benign fault. This is done by using the trust and confidence of the suspect and reported nodes; attackers
are detected by determining which nodes have very low reputation.

The work continues [88], with a proposal to use a particle filter to represent the trust in a vehicle.
This is done by using a particle filer that models all possible positions; the claimed position, as well as
knowledge of the road and radar information are fused through addition. Afterwards, the normalization
factor of the particle filter is mapped to a range of [0, 1]; how this mapping is performed is not specified,
though the authors provide a number of suggestions. However, of primary note is that this information
will all be based on some closed training phase, where “reasonable” values for the particle filter are
learned. Trust is here modelled through an exponential weighted averaging (α = 0.5) of message trust,
which is the output of the above mapping process. In addition to this trust, a confidence is computed
by determining the difference between the trust in a vehicle and the trust in the last received messages
(from that vehicle). Confidence is used as a kind of threshold to determine whether or not the trust
should be used or not.

Finally, the authors have discussed an experimental evaluation of misbehavior detection through
CAM/DENM consistency [98]. However, this paper provides near-zero explanation on how the detection
actually works, other than showing a single trace where a receiver detects position jumps, position
overlaps and sudden vehicle appearances. The paper also explicitly mentions that a user is not incorrectly
notified by a warning system, demonstrating that the author’s goal was explicitly to warn human drivers.
In our work, we also consider the setting where the vehicle’s response is partially or fully automated.

2.5 Summary

This section summarizes the lessons learned from previous work, which is used to set up the design goals
of Maat discussed in the next part of the thesis.

From VEBAS, we learn that many different plausibility schemes are likely to co-exist, and that
combination of mechanisms is the only feasible way to detect the majority of real-world attacks. We
take several of the plausibility schemes developed in this work, and extend or modify them to improve
their performance. Through the application of subjective logic, inspired by the discussion of Raya[40]
describing decision logics for trust establishment, we aim to thoroughly analyze the performance of such
schemes. The question we try to answer here is, “to what extent can we rely on message-level fusion
decisions, without the application of trust?”, a question that, to our surprise, has remained unanswered
by the related work discussed so far.

From Stübing [108], we take away the importance of working in a privacy-preserving way whenever
possible, and the effectiveness of Kalman filters as a source for ideas. Although we do not explicitly
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discuss privacy in our work, the selection process for detectors, as well as the literature survey above,
aims for mechanisms that have weak linkability requirements. Our proposed system, Maat, will be
designed to manage information about senders in a way closely analogous to Stübing’s design, implicitly
being able to use pseudonyms as identifiers. Kalman filters have been implemented as an example
detection mechanism in Maat.

From Raya [40], our main take-aways include those from their work on decision logics, which pointed
out that Dempster-Shafer theory (DST) is one of the most promising fusion approaches. In our work,
we continue in this vein by applying subjective logic, a reasoning framework that encompasses DST. In
addition, our trust setup is very much inspired by Raya’s work, and results from LEAVE have influenced
our design process significantly. For example, one of the reasons we decided an evidence-based reporting
(leading to [157]) is useful, is the result that was presented by Raya [40]. Weaknesses of Raya’s work [40]
include a lack of details with regards to data-centric detection, the assumption that all attackers are
rational, and a focus on long-term evaluation rather than focusing on the correct classification of mes-
sages. The latter case is much more suitable for C-ITSs due to the fact that these systems may respond
to invalid messages before their revocation process successfully revokes a malicious actor.

From Bißmeyer [111], we learned the importance of central detection and the risk of introducing too
many variables, as well as the value of high quality documentation and reproducibility of experiments.
In their work, the authors introduced two misbehavior detection mechanisms, which due to the space
constraints of the respective papers contain way too little details to be reproducible. Our failed attempts
at reproducing their work show that this is likely due to the specific evaluation scenario chosen by these
authors (although due to lack of data and code availability, it is impossible to validate this hypothesis).
It should also be noted that because the authors have so many variables in their system, a rigorous
evaluation of the effects of these variables is nearly impossible. In our work, we focus on correcting these
mistakes, aiming to minimize the set of variables by isolating the different detection mechanisms for
independent evaluation. However, the authors do also propose a number of interesting ideas, including
one that we adopt: a central authority should be able to replay and reproduce detection results before
trusting misbehavior reports. To this end, Maat’s design is built in such a way that this is possible, by
extracting a subset of our data structure that stores our detection results. These and many other issues
will be addressed in detail in the next part, which describes the design of Maat, including the associated
theoretical contributions.
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Chapter 3

Overview

This chapter provides an overview of Maat, the framework that forms a core contribution of this thesis.
The functionality offered by Maat is primarily centered around Research Question 2 and its sub-questions,
as these concern data management and fusion. We first discuss some assumptions made in our work,
and discuss some of the issues raised in the previous chapter, where we discussed earlier proposals for
misbehavior detection frameworks. We also introduce the basics of subjective logic, the formal backing
on which Maat’s architecture is built, after which we discuss the architecture in detail. The remainder of
this Part, consisting of four chapters, discusses the architecture components introduced in this chapter in
detail, and contains the theoretical contributions of this thesis. The practical contributions of this thesis
will be described in detail in the next Part, which discusses the evaluation methodology, and includes
the various studies performed to evaluate Maat’s performance.

Some sections of this chapter are based on our literature survey [170].

3.1 Background

This section explains the background that informs design decisions made during the development of
Maat. These assumptions are based on the system model in Chapter 1, and in this section we primarily
document how they relate to the components in Maat. We also provide a short introduction to subjective
logic, which is extensively used in Maat; a more detailed introduction to the mathematical details is given
as part of Chapter 5.

3.1.1 Assumptions

In this subsection, we discuss the assumptions made during the development of Maat. Although a lot
of these topics have already been highlighted in the introductory part, it is useful to explicitly discuss
the assumptions made by Maat. Maat was developed with current DSRC and ETSI G5 standards in
mind, and has been inspired to a significant degree by work from the resilient aggregation domain [128].
We also look towards the future by considering more closely how misbehavior detection can work at
different performance levels. We also assume a complete penetration of these technologies throughout the
remainder of this work (i.e., all vehicles are equipped with some type of beaconing technology). However,
Maat is designed to be technology-neutral: it is not fundamentally incompatible with recent developments
in the area of 5G cellular communication, in which ideas have been proposed to have dedicated V2X
communication bandwidth. This means that although the evaluation (part 3 of this thesis) is based on
DSRC communication technology, adoption of Maat in a 5G-based VANET or a heterogeneous VANET
(using both DSRC and cellular communication) would be possible. A more regular and high-throughput
channel to central authorities may even significantly improve Maat’s detection performance, since it
is much easier to include this authority’s recommendations in the decision process, and revocation is
much more rapid (making it much harder to perform long-term attacks). However, we remark that in
our opinion, the fundamental challenge in VANET research still lies in the de-central operation of as
many system components as possible. A safety system should not primarily rely on the availability of
networked services where it can be avoided, and similarly, the services for future C-ITSs should operate
in a decentralized fashion where possible.
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Although Maat assumes a decentralized network for communication, it is still assumed that the
overall traffic system is subject to some regulation through the issuing of pseudonymous certificates that
authorize a vehicle to transmit valid messages. This is in line with the various EU and US research
projects and standardization activities that have been performed over the past decade, as discussed in
Section 2.1.2. , which have focussed on how a sufficiently large set of pseudonyms can be distributed,
how authentication can be performed efficiently, and how revocation can be performed with minimal
contact with a central authority. The reason that Maat assumes this setting is that it prevents simple
implementations of a variety of simplistic attacks (including impersonation and replay attacks). Although
it may also be possible to use Maat to detect these attacks, it is much easier and more efficient to rely
on well-documented cryptographic mechanisms. Maat should be considered as a layer on top of this
cryptographic layer, which aims to add additional guarantees by detecting attacks that are performed
with valid key material. As most currently proposed systems rely on single-hop broadcast messages and
broadcast authentication mechanisms through ECDSA-signed messages with an attached pseudonymous
certificate, Maat is primarily geared towards this scenario. Beaconing messages, as standardized in
the SAE and ETSI standards, consist of few, well-documented fields whose contents can be verified
independently (e.g., by measuring whether there is a vehicle at a claimed position). Maat can also be
used to verify messages of other types, such as messages exchanged for in-network aggregation [103],
but the primary focus is on security for applications built on top of a local dynamic map (LDM),
which includes single- and multi-hop data. In our evaluation, we focus on CAM-based applications as
the primary candidate, but our design transfers to any message type where the origin of the data is
well-defined (including both types of BSMs and DENMs).

In order for Maat to function correctly, guaranteed message integrity and implicit linkability is re-
quired. This follows directly from the fact that Maat uses existing and newly developed detection mech-
anisms that validate messages by linking them to earlier messages from the same sender. If integrity
is compromised, an attacker can easily cause chaos by falsifying messages sent by other actors in the
network. Similarly, without at least some linkability between messages, the vast majority of detection
mechanisms cannot work reliably; even many plausibility checks require at least two linked messages
(see, e.g., VEBAS, as discussed in Section 2.4.1). Maat would otherwise be limited to a very small set
of detection mechanisms that can validate messages independent of earlier messages. Although this is
an interesting goal in itself, our focus is quite different. For the remainder of this work, we assume
the linkability is explicit (i.e., through pseudonyms), which corresponds to the previously mentioned
standards.

Maat could in principle be used to detect attacks on the network layer (e.g., blackhole and wormhole
attacks), however these attacks are already well-understood [164]. Therefore, we focus on the layers
above this one. Specifically, the main setting that Maat assumes are applications compatible with some
limited latency. This enables a more complex detection process that can also be used as evidence for
revocation, rather than just making safe decisions. The over-arching goal is to provide a service that
manages reliable data on medium time scales (i.e., maximal delays of around 10-20 milliseconds), as
opposed to (near) real-time applications that require faster response. Although Maat’s techniques can
also be applied in the latter setting, some of the advantages offered by Maat require detection mechanisms
that use data gathered over time, which make their use in real-time applications challenging. For this
thesis, we therefore concentrate on applications that are based on an LDM, as previously discussed in
Chapter 1. These applications include those applying beacons in the long term, such as locally tracking
nearby vehicles, as well as traffic information services and other long-term applications. An example
of a real-time application for which Maat’s detection is not designed, but for which its techniques are
still beneficial, would be cooperative adaptive cruise control (CACC). In that application, the vehicle
uses control algorithms to automatically adapt the vehicles’ acceleration by exchanging messages with
acceleration information: in such applications, several 10s of milliseconds of delay may lead to a significant
performance impact.

Although this thesis focusses on the detection of malicious misbehavior, significant effort in the
literature is also devoted to the detection of non-malicious errors. Throughout the work on this thesis,
the distinction between malicious and erroneous misbehavior has been a topic of discussion [117], and
also a topic that has received relatively little attention in the security research community. This is
partly because the distinction between some errors and malicious messages is entirely philosophical:
distinguishing these messages implies inferring intent of a sender. Presumably for this reason, most
work does not attempt to distinguish between erroneous and malicious behavior, instead assuming that
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all incorrect behavior is inherently malicious. We follow this line of reasoning and focus on detecting
misbehavior, but without attributing malicious intent; we simply inform the application that accesses
the data about the uncertainty due to misbehavior. This ensures that errors in the system are dealt
with and significantly simplifies the design of Maat, since attribution of malicious intent is known to be
difficult. An operator of a C-ITS may be interested in the distinction between errors and maliciousness:
for this purpose, Maat aims to provide a chain of evidence for each detection it performs. Maat assumes
that detectors are shared among entities in the system: as long as this assumption holds, it is possible
to replay the chain of evidence and validate the conclusion reached by another instance of Maat. This
should help humans make informed decisions when distinguishing errors from malicious misbehavior.

Finally, we briefly address the topic of jamming, intelligent or otherwise. Jamming refers to a type
of lower layer denial of service attack (usually in the physical and/or link layers): by transmitting
signals at the appropriate time, data exchange between specific vehicles can be disrupted, or in some
cases even between all vehicles. In the physical layer case, transmitting a continuous signal can disrupt
communications; in the link layer case, transmission during certain intervals is usually sufficient, by
making the channel appear to be busy. Jamming is one of the most significant concerns for a real-
world C-ITS in the context of CACC and other low-latency applications, but it is also difficult (if not
impossible) to detect reliably. Although Maat can in principle detect missing messages that were not
received, large scale jamming attacks that completely flood the network cannot be defended against using
detection systems like Maat. For this thesis, jamming is therefore considered out of scope: however, we
do deal with message loss (e.g., Maat will work if some fraction of messages is lost).

Returning to the literature systematization introduced in Chapter 2, we briefly address how Maat
could be classified in this system. Maat allows, at least in principle, the integration of any type of
misbehavior detection discussed in our taxonomy. However, in this thesis we primarily focus on data-
centric, specifically plausibility mechanisms, which we consider to be the most useful. Their independence
of other vehicles reduces the potential attack surface and simplifies independent evaluation, which are
characteristics that were identified as useful in Chapter 2. In terms of detection scope, Maat is oriented
towards local detection, but designed in such a way that results can easily be distributed between nodes
and with a back-end given enough bandwidth. In our evaluation we primarily focus on Maat as a local
detection component, but due to the reproducibility of the detection results, Maat is uniquely able
to transfer the results effectively compared to existing work. In terms of privacy requirements, Maat
was designed under the assumption that pseudonyms are valid for a reasonable period (on the order of
minutes); we do not expect full anonymity (i.e., all messages are unlinkable). Designing mechanisms to
link pseudonyms locally, as done by Stübing et al. (see Section 2.4.2), is conceptually foreseen for Maat
(see Chapter 4), but was not implemented in our prototype.

3.1.2 Subjective Logic

This section provides an brief, high-level introduction to subjective logic, a formalism for reasoning
under uncertainty. Subjective logic will serve as the foundation of reasoning in Maat; in the process of
its development, we have also made contributions to subjective logic [171], which we will describe in more
detail in Section 5.2. The development of subjective logic started in the late 1990s [6], where Audun
Jøsang was developing a formalism for artificial reasoning and notions of trust. The logic is designed for
trust management: it distinguishes between what we will refer to as variables, actors and opinions. A
simplified example might be that two persons observe an event (e.g., looking out through a dirty window
to see whether it is snowing) and convince a third person of their observation by offering some evidence.
In this example, the opinion of a person represents their belief in a particular value of the variable X:
person A may believe it is snowing (X = true), while person B may believe it is not snowing (X = false).
If both try to convince person C, it seems natural to allow A and B to also express uncertainty about
their opinion, and for C to express their trust in A and B as an opinion too. This is exactly what
subjective logic aims to mathematically formalize and achieve.

For binary variables, opinions are described in many works as consisting of belief b, disbelief d,
uncertainty u and a base rate a. We will discuss non-binary variables in Chapter 5. Formally, an actor
A has an opinion over the outcome of a variable X that takes values from the domain X = {true, false}
represented by a binary opinion ωAX = (b, d, u, a), with b, d, u, a ∈ [0, 1] and b+ d+ u = 1. The base rate
a represents the a-priori belief of A in the opinion when they have no evidence for one outcome over the
other (i.e., u = 1). To compute the degree of belief from A in X = true, one can use the expectation,
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which projects the space of opinions to a single value e ∈ [0, 1], which can then be used as in probabilistic
logic.

Subjective logic also provides operations for the combination of opinions, both in terms of reasoning
(i.e., extensions of logical operators and new reasoning operators) and in terms of fusion and trust.
Reasoning operators (e.g., inference and abduction operators) allow one to derive new conclusions about
previously unknown facts, or to translate belief on one variable into belief on another, analogous to the
way inference is used to update a knowledge database in artificial intelligence. In this work, we are mostly
concerned with the fusion and trust operations, which allow actors to combine opinions about the same
variable from multiple sources, and to maintain and update their trust in those sources. We thus focus
our discussion on trust and fusion; an extensive overview of the five main operators, including definitions
for the fusion of two opinion sources, can be found in the book on subjective logic [144]. In Chapter 9
we introduce generalizations into multi-source fusion operations for these operators and provide a much
more detailed overview of subjective logic. For trust, subjective logic provides a discounting operator
that can be used to translate trust in another actor into trust in information provided by that actor,
which we apply in Maat to model the reliability of detectors.

The mechanics of fusion between different opinions depends significantly on information external to
an opinion, such as whether two actors’ observations are dependent (in the sense of probability theory),
as well as the desired outcome. For this reason, multiple fusion operators are defined for this logic, and
the appropriate choice should be made by the analyst [144, Chapter 12]. The list of available operators
includes belief constraint fusion (BCF), cumulative belief fusion (CBF), averaging belief fusion (ABF),
weighted belief fusion (WBF) and consensus & compromise fusion (CCF). With the development of Maat,
it became necessary to provide multi-source extensions of these operators, which were not available for
WBF and CCF. As part of the contribution of this thesis, we define these extensions; this will be discussed
in detail in Chapter 5.

3.2 Maat

Maat is a misbehavior detection framework designed to combine the execution of multiple misbehavior
detection mechanisms that can be designed independently. Unlike most previous work, it can concep-
tually integrate a large variety of different mechanisms, while maintaining flexibility over how the final
result is computed. This is done through the application of subjective logic, a belief theory similar to
Dempster-Shafer theory (DST). In this logic, subjective opinions are relations between objects or actors
that express confidence or trust, along with a degree of uncertainty. Maat uses these opinions to express
relations between data, other vehicles, and detection mechanisms. A natural data structure to store this
information is a directed graph, since these relations are directional. Maat can then examine all paths
that lead to a specific data item (e.g., a position claim of a vehicle) and draw conclusions from subjective
logic through the fusion and transitivity operators provided by the logic. The graph is Maat’s core; it is
referred to as the world model, as it represents all the available knowledge of a specific vehicle that runs
Maat.

Maat also provides components to extract the relevant data from messages, store the appropriate
data in the graph, and manage the independent execution of detectors. These tasks are executed in
separate threads and communicate through a graph-like structure through message passing. In this
model, detection mechanisms execute independently: each sees the series of messages as a sequence
of inputs, as it would when directly receiving messages. By expressing the output of these detection
mechanisms as opinions on the data (or on other vehicles), Maat can store and combine the output of
each mechanism. A versioning system is used within the graph to enable access to previously received
information, as well as previously executed detection events. This is useful for generating messages that
contain evidence, i.e., messages that capture why certain decisions were made. These messages can be
used for reporting misbehavior to neighbors, or for global revocation by transmitting a subset of the
graph to a central authority.

In Figure 3.1, a high-level overview of Maat is given. On top, the ad-hoc network between vehicles
and road-side units is illustrated: each vehicle operates an on-board unit (OBU) with corresponding
network stack. Within the network stack (which is based on the corresponding ETSI standard, ETSI
EN 302 665), Maat is best placed at the facilities layer, because it serves as an interface between the
applications and the underlying network and sensors. Maat’s overall workflow is a single pipeline for
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Figure 3.1: High-level overview of Maat
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both CAN-internal and VANET/C-ITS communication, which provides a logical ordering for the entire
system. Data is extracted from these messages using simple parsing code, creating or updating the world
model as appropriate. The world model stores the data in a graph structure, including trust relations
between vehicles and detection outcomes of the individual detectors. Maat ensures that all detectors
work in parallel, in isolation of one-another, before storing all the results in the world model. Storage
in Maat is versioned, i.e., it is possible to analyze specific historical states in the model. Maat provides
an API, mediated by a decision logic, which provides applications with access to information exchanged
within the network.

The detailed architecture of Maat has three components, also illustrated in Figure 3.1. The first
component we will discuss is the bottom right component: the execution and data model. Conceptually,
this component describes how data is stored and accessed by applications; in addition, this component
is responsible for data management, locks, parallel execution and similar implementation details. We
elaborate on these responsibilities in Section 3.2.1. The second component is responsible primarily for
decision making: it controls what data is labelled trustworthy when an application asks for reliable data.
This involves modeling the trust between vehicles, exchanged in the network, as well as the combination
of detection results produced by detection mechanisms. Section 3.2.2 provides additional details on the
questions this component needs to address. Finally, the detection & validation component contains
the actual detection mechanisms developed for Maat. This component also controls what detectors are
executed in which situation, and how much these detectors are relied on. This is described in Section
3.2.3. Each of these sections correspond to a detailed chapter in the Maat part; in the evaluation part,
we discuss how these components interact to provide Maat’s behavior.

3.2.1 Data Management

The data management component is centered around the world model, and basically describes how
information is stored in Maat. As previously noted, a graph is the natural way to represent a world model
that contains both data, entities that have opinions about these data, and those opinions themselves.
We now discuss in some detail how the graph is structured; an example is given in Figure 3.2.

Data is stored in vertices of this directed graph that have no outgoing edges, labeled data in Figure
3.2. Opinions about the correctness of the data are the incoming edges of those vertices. Correctness
can be claimed by a sender, e.g., a vehicle claims to be at a particular position: this is an edge between
an entity and the data. Data vertices have a referent, which is the thing about which the data provides
information (e.g., a region for a traffic jam notification, or a specific entity for a beacon message), in order
to distinguish the referent from the sender. This allows consistent representation of forwarded messages.
Other entities in the system can be other vehicles or sensors, also marked in grey in Figure 3.2 because
they are also external information. Correctness of data or trustworthiness of entities are validated by
detectors, i.e., detection mechanisms executed locally in this instance of Maat; these are data-centric
detection mechanisms and node-centric detection mechanisms, respectively. These are marked in green
on the top and bottom of Figure 3.2. If a trust scheme is used that explicitly exchanges trust between
vehicles, this information is represented by edges between entities in Maat, such as the edge between the
two grey vehicles in Figure 3.2. Finally, add a single root vertex that has no incoming edges, labeled
Maat in Figure 3.2, issues opinions on detectors: these opinions can be used to model which detectors
are currently active (i.e., whose opinions are actually considered when evaluating a query).

In summary, Maat thus contains four vertex types: data, entities, detectors and the root vertex
(referred to as MDS, or misbehavior detection system, since it ultimately decides which misbehavior de-
tection mechanisms are actually used). Edges relate the root to detectors, detectors to entities, detectors
to data, entities to entities, and finally entities to data, for a total of five edge types. This can be seen in
Figure 3.2, where two data items, two vehicles, a sensor, two data-centric detectors and one node-centric
detector are shown. An example corresponding to this figure could be that the two data items represent
the beacon information of the vehicles. In the next section, we discuss what happens when one of these
beacon sets is accessed by an application through the decision logic. Whenever receiving a query for
data, Maat automatically fuses the available opinions from all sources, as discussed in the section on
fusion and trust.

However, before discussing these topics in detail, we first briefly discuss the execution model used
in Maat, as shown in Figure 3.3. As already pointed out, the updating of the world model and the
application API are independently executing components. Information may come from multiple sources,
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arriving through the network stack: to have a consistent view, Maat uses a single entity to manage
the arriving messages: the snapshot manager. This manager dispatches detection through the detector
manager using a standard scatter/gather abstraction, querying each detector for their detection results.
The detector results are collected and passed back to the snapshot manager, which then stores the data
and results into the world model. In parallel, an application can access the world model, as shown to the
right of the figure. A detailed discussion of data management and execution can be found in Chapter 4.
We now move to discuss the API used to access the data, where the decision logic selects the data to be
returned.

3.2.2 Fusion and Trust

Representing the received data and collecting opinions from detectors is not useful by itself: decisions
on what data should be accepted and acted upon is an important step to actually build a working
system. In Maat, this is implemented through two parallel approaches: allowing trustworthiness queries
on any results that area already processed, and immediate message-level decisions as soon as detectors
have made relevant decisions. The second approach is most useful for immediate intrusion detection,
and most of this thesis will surround this approach; however, the fact that all relevant opinions are
stored is a deliberate decision, made to open up future directions for research. By storing this data,
detailed reports can be generated from Maat instances, and these reports can be completely verified and
even re-generated by another instance of Maat. It also enables revision of previous output by detection
mechanisms, which is a common issue in secure data aggregation1.

Both the queries and the immediate decisions are implemented using a combination of fusion and
transitive trust. Fusion is the combination of information from multiple sources: Maat uses fusion to
combine evidence from different sources (i.e., incoming edges in the graph). Transitive trust, on the other
hand, allows Maat to use trust received from other entities, and to interpret claims from other entities
through node-centric detection mechanisms. Transitive trust is also used by Maat to weight the input
from different detectors; this will be discussed in more detail in the next section. If Maat is deployed
without node-centric detection mechanisms that explicitly exchange trust information, then there are no

1In summary: what happens if a legitimate vehicle transmits a message, which it later realizes, is invalid? In Maat’s
model, detection mechanisms can correctly handle these cases. Similarly, the literature has some proposals [79] that suggest
vehicles also broadcast inverted claims if they learn their claims have become invalid: in Maat’s model, detectors can revise
their opinions about such claims.

41



detector
manager

snapshot
manager

data-centric
detector

data-centric
detector

node-centric
detector

802.11p CAN

detection results

detection triggers

messages

final detection results
new data

Application

API

query trustworthy data

world
model

 

link/store
data

& results

Figure 3.3: Maat’s execution model

data

sensor

vehicle 2data-centric
detector 1

vehicle 1

data-centric
detector 2

node-centric
detector

Transitivity

Multi-Source Fusion

Figure 3.4: An example of fusion and trust transitivity.

edges between different entities, making the graph a directed acyclic graph. This implementation has
advantages in terms of runtime performance, and avoids the thorny issue of cycles in a trust graph. Since
arguments can be made that recommender trust over multiple hops is generally not very reliable, the
information lost through this decision is quite limited.

For fusion, subjective logic offers multiple operations: binary operators have been proposed for these
operations in the book on subjective logic in 2016 [144], as well as partial proposals in the literature [160].
However, not all of these operators are associative: part of the contribution of this thesis is the proposal
of multi-source fusion operations2, a contribution to data fusion that will be discussed in more detail in
Chapter 5.

Figure 3.4 gives an example of what happens when the right-most data item in Figure 3.2 is queried:
the returned opinions are listed here. The orange edges between the node-centric detectors and vehicles
are used to compute the trustworthiness of the vehicle that has an opinion about the data. The resulting
opinion from these trust operations is merged with opinions provided by data-centric detectors and
sensors. This is done through fusion operators, as discussed previously. Note that the opinions between
the root and the detectors are not included in this example; these are discussed in more detail in the
next section, as they relate primarily to the detection process.

2We use operation to refer to the fusion of an arbitrary list of opinions from various sources, rather than operator,
which we use to refer to n-ary operators for fixed n.
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3.2.3 Detection

Accurate detection of attacks fundamentally depends on the performance of detectors used in the detec-
tion process. A well-known result in the field of data fusion states that no fusion operator can improve
performance in all cases with imperfect detectors; this is referred to as data imperfection [105]. There-
fore, this thesis also discusses several existing detection mechanisms and their extension to subjective
logic for an optimal support of fusion. In the evaluation of Maat’s components, we also provide a novel
metric based on error rate distributions across observers, which is an indicator for the potential perfor-
mance improvement that can be gained by improving the detector, rather than the fusion of different
detectors. We explain how this metric, subjective logic, and detector design are closely related concepts
that significantly impact overall performance in Chapter 6 and Chapter 8.

For the prototype of Maat, a number of different detectors were implemented and evaluated. Some of
these were re-implemented from earlier work, as no public implementations exist for the vast majority of
detection mechanisms in the literature3. It turns out that re-implementing and deploying detectors in the
more elaborate evaluation scenarios that have arisen in the vehicular communication community since
those mechanisms were proposed is quite valuable, as our results show several mechanisms to perform
much more poorly than previously thought. Based on those results, we propose alterations to existing
detectors, and we used this information to implement new detectors. We described these modifications
and proposed detectors in Chapter 6.

One key fact about detectors appears to be that they are fundamentally bound to detect specific
attacks, or rather validate specific information stored in the world model. Thus, the question arises
how detectors can provide the fusion process with information on how reliable their decisions are, more
specifically how the subjective opinions used for fusion are chosen. However, some detectors simply
cannot perform well in certain situations, e.g., verifying whether the claimed speed is in a valid range
for a given road will not be beneficial in a traffic jam on this road. It thus seems natural to avoid
relying on the detectors alone to correctly estimate their confidence, since doing so assumes that all
detectors correctly estimate confidence for every possible scenario. This is where trust transitivity on
the detectors comes in, as mentioned in the previous section: trust transitivity can be used to externally
manage the detectors, applying weights to the detectors for fusion. Chapter 6 will discuss in detail how
trust transitivity is applied, and provides a theoretical perspective on trust transitivity and detector
confidence, respectively. For the initial prototype of Maat, trust transitivity is used statically to show
the interaction between detector performance, weights and fusion operations (see Chapter 8).

3To the best of our knowledge, ours are the only ones whose source code is publicly released
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Chapter 4

Data Management

This chapter describes data management in Maat, as briefly introduced in the previous chapter. We
describe the design of the world model, discuss the various decisions made during its design and describe
how data is stored by the framework. This provides a foundation for the next chapter, which explains
how data is retrieved from the world model, and how its trustworthiness is assessed.

4.1 World Model

This section addresses the conceptual design and motivation of Maat, discussing the underlying ideas
followed by a formal description of our graphical representation.

4.1.1 Background

Before discussing misbehavior detection specifically, we discuss world models in the abstract. The idea to
manage all related data for a vehicle at one point is relatively common for a variety of different applica-
tions and at different abstraction levels. For example, a network routing application typically maintains
some kind of neighbor table [36], usually with some more information (e.g., position information). On
the other hand, aggregation and secure aggregation frameworks [128] have been developed that take a
much more holistic view, aggregating all dynamic information distributed in the network. A similar
trend can be observed in standards; for example, ETSI standards for the transport & network layer [47,
Section 6.2] and the facilities layer [47, Section 6.3] both include a data store that contains information
about the vehicle’s surroundings, for routing and service purposes respectively. Although the designs
appear different at first glance, they have important commonalities: at both layers, information from
the vehicle’s surroundings are represented. In the aggregation literature, this is typically referred to as
a world model, a model that explicitly stores and represents information about a vehicle’s surroundings.

The concept of a world model is also used by works described in related work: both work on VEBAS
(see Section 2.4.1) and the work by Raya et al. (see Section 2.4.3) includes a data store describing the
vehicle’s surroundings. Throughout the detection literature [12, 33], the concept of some central data
structure is often applied implicitly, and this leads to considerable confusion at which point detection
occurs. There are two different points at which decisions are typically made: immediately as data comes
in, as part of message processing (e.g., in VEBAS), or at query time, when an application accesses
the data (e.g., in secure aggregation work [128]). Depending on which of these is applied, the decision
algorithm has more or less information available, which is important because the amount of available
information represents the upper bound of possible performance.

When decisions are made as part of message processing, misbehavior detection can be seen as an
application of stream processing. The use of stream processing for misbehavior detection often reflects
ideas from intrusion detection, and is particularly useful for low latency use cases, where immediate
decisions are required. With the emergence of cooperative autonomous driving, this approach is gaining
ground, but due to its relative novelty, there are relatively few authors specifically addressing this topic.
Stream processing can be further sub-divided into a filtering approach (as e.g., taken by Stübing et al. [82]
with their plausibility checks) and a labeling approach (e.g., Watchdogs, which label specific nodes as
suspicious). In a filtering approach, each assessment assumes that the world model only contains reliable
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data, and this data is then used as a basis for the validation of new data. However, it has been suggested
that classification errors in such approaches can cause the system to deviate from the real world, especially
if the data is noisy [141]. These types of attacks are well-documented against aggregation scenarios in
particular, as discussed in previous work [103, 128].

To counteract these attacks, there is other work that performs its decision making when data is
accessed by an application [49, 75]. This means that whenever an application accesses data from the world
model, the system determines whether the data is trustworthy. Depending on the specific application,
it may then return only trustworthy data, label the data with a broader confidence range, or exclude it
completely. Regardless of what is provided to the application, there are also multiple ways to evaluate the
data. Previous work has looked at streaming information for applications, which is very close to stream
processing as discussed above (e.g., Petit et al. [75]). Basically, applications here require streaming
information, and the detection process directly influences how the application responds to potential
safety-critical information.

On the other hand, both early and recent ideas in the literature suggest that hypothesis testing [12,
149] might be a more comprehensive approach. In these works, it is generally argued that more informa-
tion implies better detection performance. Golle et al. [12] basically apply Occam’s Razor, and select a
subset of all messages that must be malicious as the minimum set so that the data in the world model is
consistent. Zaidi et al. [149] propose a specific hypothesis testing method to compare the average traffic
flow to the behavior of a specific vehicle; if it deviates too much, it is considered inconsistent (and thus
malicious). Analogously, trust-related results from Raya et al. [40] are based on game theory, describing
longer-term effects of potential attackers, and discussing the feasibility of long-term attacks in this style.
All of these techniques rely on the fact that information is stored and kept as long as possible; this is
one of the key inspirations for Maat’s world model design, which assumes that data should be available
permanently1. Similar ideas have previously been proposed based on a secure logging approach [110].

In Maat’s detection, both stream processing and verification at data access are applied: as messages
come in, each detector is started and provides its output to the world model. When the data is queried,
all the relevant results are collected from the world model and combined together. Because Maat’s
detection process is completely parallel, as long as detectors obey the constraints outlined in this chapter,
the detection results will be repeatable. It is also possible for Maat to request new detection results based
on novel information, by injecting a corresponding message (e.g., to implement detectors such as the one
proposed by Zaidi et al. [149]). Maat’s overall workflow is shown in Figure 4.1, which is a substantial
improvement of our initial idea [115]. This figure shows the interaction between the six components that
make up Maat: an input converter that splits and converts the message into the appropriate format
(1), allowing the snapshot manager to write the data to the world model and launch the detectors (2a),
through the detector manager that supervises detector execution (2b). After the detectors finish their
detection process, they return their results through the detector manager (3a) back to the snapshot
manager (3b), which appends this data to the world model. The snapshot manager is responsible for
ensuring that the world model is always in a consistent state, which is implemented through versioning as
discussed in Section 4.2.2. A different view of this process was also described in the execution workflow
in Section 3.2.1. The API on the bottom of Figure 4.1 represents an interface through which both Maat’s
components and applications have continuous read access to the data stored in the model.

In the remainder of this section, we discuss how the world model of Maat is structured and the
reasoning behind it. Recall from Section 3.2.1 that the world model has a graph structure that connects
the detection system itself with a number of different node- and data-centric detectors. Those detectors
in turn evaluate other vehicles and the data they have transmitted, represented as entities and data items
respectively. All of the resulting evaluations and trust relations are linked through opinions, expressed
in subjective logic, which are later used for decision making (as discussed in Chapter 5).

4.1.2 Data in the World Model

The world model is a directed graph that contains vertices for the actual data, any known entities (i.e.,
other vehicles or RSUs), and detectors that determine the trustworthiness of either data or entities. The

1For performance reasons, one might imagine aggregation or history pruning techniques to remove or condense older
information. We designed Maat with these ideas in mind, but consider their implementation and evaluation future work.
Similarly, as with most VANET applications, the assumption is that this data is removed when the vehicle is reset, or when
a trip ends. The implementation details of these aspects are outside the scope of this thesis.
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Figure 4.1: Maat’s conceptual workflow

vertices for data are referred to as data items, which are vertices that contain information about a specific
event (e.g., a decentralized environmental notification message warning about a traffic jam) or a series of
related events (e.g., beacon messages from the same sender). We group closely related messages, such as
beacons, because typical VANET applications rely heavily on such messages for core functionality, such
as tracking nearby vehicles. In Maat, we thus maintain a history of messages in the same data item,
rather than creating a separate data item for every message. However, before discussing the details of
how these components interact, we first provide a more formal definition of a Maat world model:

Definition 1 (Maat world model). A world model WM is a directed graph G = (V,E), where the vertex
set V = VDet ∪ VData ∪ VEn ∪ {MDS} consists of four subsets, describing for types of vertices. These
are the representations of detectors VDet, data VData, entities VEn and the decision node {MDS}. The
edge set E is a set of directed edges that describe a relation between two vertices, labeled with a subjective
opinion.

The vertex types mentioned in Definition 1 also restrict which edges may exist: vertices with data
(i.e., v ∈ VData) cannot have outgoing edges, and the decision node MDS may not have incoming edges.
These restrictions are discussed in detail below. Edges represent subjective logic opinions between the
vertices in this graph: the trust in data is then intuitively a set of paths between the decision node MDS
and the data vertex in question. We place additional restrictions on the edges between vertices that
are related to the semantics of those vertices; thus we first introduce the semantics and contents of the
vertices.

Definition 2 (Data item). Data items VData represent individual pieces of information, such as beacons
or data about specific events, and contain a history that represents previous values.

The concept of using data items is an idea we originally proposed in [115]: data items represent
claimed events, which may or may not be valid2. As in that early proposal, Maat’s data items are leaves,
in the sense that they have no out-going edges. Events can here refer to a broad spectrum of messages:
either specific occurrences, such as traffic jams, objects or road conditions, or periodic behavior such
as beacon messages. In the case of beacon messages, Maat considers beacons from the same sender to

2In our implementation, we assume that a beacon represents exactly one claim, namely that the information contained
within is correct and consistent with previous beacons. It is in principle possible to split a beacon into multiple claims,
e.g., one for a position, one for a speed, one for direction. This granularity represents a trade-off that will be addressed
later in this chapter.
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belong together (i.e., in the input converter in Figure 4.1), and stores the corresponding messages in
a history list in the same data item. This history is ordered by world model version, as discussed in
Section 4.2.2. In a data item, the following meta-information is stored:

• the relevant variable types

• a history that specifies the values this data item had at specific times

• the referent, i.e., to what or whom this data item refers (typically a road segment or vehicle)

Definition 3 (Entity). Entities VEn represent external sources of opinions, which are typically other
vehicles that express opinions about each other or about specific data items. A vehicle can also express
opinions about another vehicle’s data (i.e., an entity can have an opinion about data without being its
referent).

The idea behind representing vehicles as entities relates to Raya’s work, as well as our earlier pro-
posal [115] and the general concept of trust networks. Specifically, we represent entities independent of
the related data in order to assess their reliability separately. This allows us to essentially mirror a wide
variety of node-centric mechanisms, which typically report trustworthiness through messages exchanged
between vehicles (e.g., trust or reputation values). These can be modeled as opinions between entities;
because entities can have opinions about arbitrary other opinions, this part potentially adds cycles to
our graph. A detailed discussion of this issue will be provided in Chapter 5, which discusses trust and
fusion.

Another important reason to separately represent entities in the world model is that this simplifies
dealing with privacy issues. Although our discussion focusses on detection, and the entities represent
vehicles, it is equally possible to use pseudonyms in their place. This makes Maat compatible with most
privacy-preserving VANET proposals that have been made. Future work could even add a module to the
world model that expresses relationships between entities, e.g., when two pseudonyms are determined
to be the same entity. By annotating the world model with this extra information, it becomes possible
to locally link pseudonyms, which potentially leads to a lower risk of Sybil attacks and fewer detection
errors. An alternative way to use this information is to combine all pseudonyms from the same source in
one entity, making Sybil attacks impossible; however, this requires an extremely reliable linking process
and is likely only feasible in the back-end (as discussed by Bißmeyer et al. [89]). For the remainder of this
thesis, we will focus on the case where linking is taken care of by a different component (possibly through
queries on Maat’s world model), which decides locally which messages originate from which entity. We
will not address attacks that target this part of the system3.

Definition 4 (Detector). Detectors VDet represent misbehavior detection mechanisms, which can vary
from a simple plausibility check to a complex vehicle tracking approach.

Detector vertices are one of the major differences between Maat’s world model and the multi-graph
approach that we originally developed [115]. In the multi-graph approach, we allowed an arbitrary
number of edges between the ego vehicle, the other vehicles and the corresponding data. Apart from
the fact that it makes queries more complex to understand, the multi-graph approach is also needlessly
complicated from a semantic perspective: the opinions are normally held by detectors, and not necessarily
by the vehicle on which those detectors execute. We decided to avoid this complexity and instead
represent each detector as a graph. This also allows us to express opinions between the decision node
and the detector, versioning these in a consistent way; this was not possible in the previous model.
Another advantage of representing detectors independently is that we can include multiple instances of
the same detector with different parameters, and we can more easily communicate reproducible results
to other entities. For example, a vehicle can transmit an opinion expressed by one of its detectors, and
include that detector’s state in the message. If the detector relies only on messages exchanged between
vehicles, a receiver can validate the detection process before including the opinion in its own world model.

3 It is still possible to attack this by, e.g., attacking the linking component. On the other hand, Maat in both concept
and implementation also allows the implementation of Sybil detection mechanisms. These detection mechanisms cannot,
in the current implementation, state that several entities represent the same node, but they can issue a low trust value on
all entities. In our view, this approach is the correct one; parallel use of several identities over periods longer than foreseen
by pseudonym change periods should be considered malicious.
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Each detector vertex stores the following meta-information:

• detector type

• values for parameters, if any

• detector state, if necessary

The parameters for a detector represent initial constant values, such as thresholds, which are also
used to identify the detector. This is useful when applying Maat for a parameter study of a detector, or
when using two different parameter sets of the same detector for different purposes.

Definition 5 (Misbehavior detection system). There is one special node in our model, called MDS,
which represents the decision making component of Maat. It has no incoming edges, and it is used as a
starting point for every query.

To make it easy to query trustworthiness of a specific data item, we use the MDS node as the starting
point of all queries in our graph. By searching paths between MDS and a specific leaf (data item), we now
obtain a visual intuition of how Maat uses this graph for queries. Each path represents some evidence
of trustworthiness or distrust, depending on the opinions at the respective edges. The paths are first
resolved into individual opinions, and those opinions are then combined to output a final decision. As a
performance optimization, we also allow edges between the MDS and any data or entity, which we refer
to as a cached opinion. This stores any previous output, and is removed from any path query (i.e., paths
for evaluation must always have length > 1).

4.1.3 Edges

So far, we have explained the different types of vertices, but not the different relations between these
vertices. In the simplest case, every edge between two vertices in this model is a subjective logic opinion
expressing the opinion of the originator on the destination. For example, if a detector D expresses
an opinion about a data item V , the edge contains an opinion ωDV , representing D’s confidence in the
correctness of V . A detailed discussion of opinions will be provided in Chapter 5; here we focus on the
subtle differences in semantics between the edge types, dependent on the vertices involved.

Entity to Data edges mean that either an entity E has transmitted a specific opinion on the data V ,
or Maat has added a default opinion from E to V because E is the referent of V . These edges are used
to represent how confident an entity is in its own results, which is particularly useful if the entity itself is
uncertain about the transmitted data. This is especially common in aggregation scenarios, as discussed
also by Dietzel in their thesis [128]; these edges allow seamless integration with their ideas.

Detector to Entity or Data are two types of edges that represent detector outputs. These opinions
represent the core of the actual detection process: each detector can output an arbitrary amount of
edges on different nodes every time that new information is received. These edges are sent back to the
snapshot manager (see Figure 4.1), and subsequently stored in the world model. Note that detectors are
somewhat trusted here; we allow any detector to arbitrarily generate edges on different entities and data.
The idea is that this allows maximum flexibility, allowing a detector to revisit their issued opinions at
any time.

Entity to Entity edges are Maat’s representation of a traditional trust graph. This allows Maat to
take advantage of previous results in this area, allowing vehicles to exchange trust values to deal with
individual malicious vehicles over the long term. Maat’s trust in these entities is independently computed
by any node-centric detectors.

MDS to Detector edges represent Maat’s trust in the performance of the detector. Without further
information, this trust is assumed to be the same in all detectors; however, for technical reasons discussed
in Chapter 5, it is useful to scale down the immediate output of each detector. This is exactly what these
edges are used for. It allows for the design of a dynamic configuration component to Maat, which can
choose weights for each detector at run time. This is useful, because our evaluation results in Chapter 6
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Figure 4.2: A Maat world model.

suggest that most detectors are sensitive to the context (e.g., type of road), which can be determined by
a dynamic component. To understand this, consider a speed plausibility mechanism: the expected speed
strongly depends on the type of road and the existence of other traffic. This has also been reported by
others [29, 149].

MDS to Entity or Data edges are used for caching purposes; to optimize performance, the same
result should not be computed twice. Basically, this means that when information about some data or
an entity is queried, the resulting opinion is stored in one of these edges.

4.1.4 Summary

To summarize, the Maat world model consists of vertices and edges, who together represent the state of
the world surrounding a particular vehicle. The leaves of the world model (i.e., vertices without outgoing
edges) represent the actual data that is relevant to applications; querying for this data triggers a path
search from the MDS to this data, which results in a trust evaluation of this data. This is essentially
summarized in Figure 4.2; as pointed out here, data items also contain a history – this will be addressed
in detail in the next section.

Note that this conceptual model is also useful for the communication and exchange of the data in
the model. If a vehicle decides to report a specific vehicle, it only needs to take a sub-graph of its world
model and transmit this to other vehicles. As long as this only relies on VANET messages, vehicles can
completely reproduce the results (assuming the original messages are cached somewhere, with signatures
included, as often suggested in the literature). Should internal sensors of the reporting vehicle be involved
(i.e., be part of the sub-graph), a receiver of such a sub-graph can also re-write all the data from the
sensor to originate from the reporting vehicle. We discuss these ideas in more detail in Section 4.3.

4.2 New Data

The entire workflow shown in Figure 4.1 consists of more than just the world model itself; it also has read
and write operations. Rather than continuous read and write operations to the world model, writes are
centralized in the snapshot manager. Each write is a consistent change that either includes an update of
the world model (triggered by the reception of a message from an external source), or the addition of new
detection results. Although it is theoretically possible to write the detection results to the world model
immediately, this requires weakening the consistency model that is used for the world model (see Section
4.2.3). Instead, we require that each change be written to the world model separately, through the
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snapshot manager. This provides an implicit logical ordering (i.e., the order of writes): as long as Maat
receives the same data in the same order, it will produce the same world model state. Because historic
information is often important for misbehavior detection, as well as applications in general, adding new
data does not cause old data to be overwritten, but rather the new data is amended to the model. We
explain how revisions of the world model are maintained in Section 4.2.2. However, before discussing
versioning, we need to explain how Maat knows what data goes in what item, which is explained in the
following section.

4.2.1 Linking

To decide what data is stored in which data item, it is necessary to choose the granularity of the data.
This term comes from the field of in-network aggregation, and is used to reason about what data is
aggregated to which extent. Similarly, Maat’s world model will always increase in size if all beacon
messages are kept; it thus could be reasonable to delete old messages. Deciding what old data is no
longer relevant is a task quite similar to the challenges faced by aggregation applications, where the goal
similarly is to retain as much information in as little storage as possible. The choice of data granularity
is always a trade-off between data accuracy (i.e., retaining as much information as possible) and storage
capacity or bandwidth usage (actually using and sending the data, respectively). In the case of Maat,
we design the system to keep all relevant data, at least internally, until Maat is reset, for maximum
reproducibility (i.e., maximizing the data accuracy).

In addition, Maat must also decide what data is stored in which data item specifically, and not just
what data to keep. Recall that every edge to a data item contains an opinion about the correctness
of that data; however, there is clearly a difference between stating that the position information in a
data item is correct, and stating that the complete beacon message in which that position information
is contained is correct. Throughout the development of Maat, we experimented with several ideas for
grouping messages. From the aggregation point of view, a common approach would be to group messages
by space-time segments, but for many applications this granularity is too low. Another consideration
was that we would store every single field of a beacon message in a data item; logical operators could
then be used to generate new data items as necessary. The advantage of the latter approach is that the
edges explicitly capture exactly what a detector outputs. However, this makes fusion very complex: how
should related data items be combined, and which detector outputs should be considered when deciding
on the reliability of messages? Maat forces us to think explicitly about these challenges; in this work we
focus on the case where all outputs are combined to evaluate a single message (i.e., a data item represents
an entire beacon message). We focus on offering a significant improvement in this fusion that does not
introduce additional complexities that raise more unsolved challenges.

Moreover, the required increase in storage and computational requirements that a detailed represen-
tation would entail are no longer reasonable for this domain. ETSI foresees between 6 and 12 highly
dynamic fields in a CAM, including most required fields (heading, speed, driving direction, longitudinal
acceleration, curvature, and yaw rate); as well as various optional fields (which includes acceleration
control, lane position, lateral and vertical acceleration, and steering wheel angle). Even in the simplest
case, this means storing each field F ∈ F individually requires 6 times more data items (|F|); when also
considering combinations of different fields (e.g., speed and heading are evaluated together), 26 − 1 date
items (|P(F)|) are needed. This means that, with n detectors, up to n · |P(F)| opinions will need to be
stored. Even when assuming each detector outputs at most one opinion (n = 1), each message would
require 26−1 edges to be updated or created, and 26−1 data items must similarly be modified. Since one
of Maat’s fundamental requirements is that evidence for detection results are stored, this means that with
a message frequency f of (up to) 10Hz and k vehicles, storage required for a dense scenario corresponds
to 10 · k · (27 − 2) objects per second. In high density settings, it can easily happen that k > 200; with a
conservative estimate of 20 bytes per object, this corresponds to approximately 5 megabytes per second.
When also considering optional fields, this quickly increases to around 328 megabytes per second, which
clearly cannot be stored for any meaningful length of time.

Even when the amount of messages that need to be processed is much smaller, note that the time
available for processing messages is (f · k)−1, i.e., in the range of milliseconds per message. Although
fusion for each message can be expected to achieve this performance for an individual message, splitting
this message into multiple data items also implies that multiple steps are required to fuse together the
detection results, further increasing complexity. Because one of the primary results from our literature
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survey (see Chapter 2) is that including more detectors generally detects more attack types, we here
prefer to minimize the time required for fusion. We consider further increasing the expressiveness of
Maat’s world model as future work, which can enable increased performance for (relatively) niche ap-
plications such as detailed reporting and revocation, as well as aggregation applications. Our work thus
concentrates on providing reliable short-term detection results, which are well-suited to the applications
being introduced in the C-ITS domain in the near future.

4.2.2 Versioning

As new data comes into a world model, in many previous proposals it would replace or persistently
modify the data previously stored there. The use of Kalman filters for tracking nearby vehicles is a
good example: the update phase of the Kalman filter replaces the previous state with a new estimate
of the position of a vehicle. Similarly, in a neighbor table of a routing algorithm, previous positions are
normally discarded. However, this data may be quite useful in the detection process or during revocation.
For this reason, Maat versions its world model, storing the historic, previous states in a data store for
later retrieval. This works regardless of which data granularity choices are made; whatever changes
would normally be overwritten after the data is stored in the world model gets replaced with an update
operation.

Maat stores the different application states that correspond to each message in a history, because
typically receiving a message just replaces the old information in the application. After this change is
applied and detection is performed, the version represents a consistent snapshot of the vehicle’s world
view. In the world model that Maat uses, this process is implemented in a simplified way: for every
write, a version counter is incremented, and each component in the graph (vertex or edge) has a history
that maps the version to its data. To generate a view where only the latest data is available, one can
simply ignore the history, and to go back to any previous world model state, one can simply use the
version as a reference. This is possible because all write operations are centralized in the snapshot
manager, which is the only thread that has write access to the world model. More precisely, Maat uses
a single writer design, it can guarantee global consistency for applications that request data, even when
the detection process would normally only provide eventual consistency. However, this requires that the
entire detection process is in itself atomic: linking the data, doing the detection and writing the data to
the model should be one atomic step. Although this provides the foundation necessary to provide globally
consistent results, it requires that the snapshot manager waits before writing the detection results into
the graph, and thus Maat’s performance is limited by the slowest detector. In the next section, we will
explore some ways that potentially reduce this constraint.

4.2.3 Consistency

Maat performs detection using multiple detectors that execute independently, and which are potentially
implemented by third parties. With the wider availability of multi-core processor architectures through-
out every field, at least the detection process itself, which is independent of other detectors, can be
executed in parallel. In its current design, Maat places some restrictions how detectors behave in order
to preserve consistency in the world model. In particular, writes are implemented through a standard
locking mechanism (i.e., writes can only be performed once readers release their lock, and readers wait
for the writer to finish). Because Maat atomically writes new data and new detection results into the
world model, retrieving any version of the world model and performing read operations on this version
will always provide the same view. In the detection process, Maat first links the data to existing data,
updates the version, informs the detectors and requests their output, before modifying the world models’
contents. The detector manager ensures that all detector outputs are together seen as a single atomic
message by the snapshot manager (see Figure 4.1). Therefore, the sequential ordering of messages (at
the snapshot manager) defines a sequentially consistent world model.

These restrictions forbid the modification of the world model itself, and thus restrict interaction
between detectors during the initial pass over the message. It also reduces performance, since this model
requires waiting for all detectors to finish. However, this is entirely reasonable for the type of detection
typically performed by Maat: a model where the order of detector execution matters for the final decision
is fundamentally flawed. Decisions reached by such a system would not be reproducible, and therefore not
constitute evidence for misbehavior (or for correctness). Because this is our primary area of application,
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and because we are not primarily interested by real-time constraints, Maat was implemented with this
stronger consistency model.

Throughout Maat’s development, we investigated several alternative consistency models and con-
straints on detectors. The goal was to provide a satisfactory model that both enables sufficient flexibility
to implement real detectors, while at the same time allowing the results to be used by applications as
fast as possible. Specifically, two alternatives were considered: a stateless model and a merging model.
The stateless model required each detector to perform its detection in a stateless manner, which is also
independent of pre-existing data in the world model. This corresponds closely to a stateless stream pro-
cessing setup (as discussed above), and is very similar to every-day network security tools like firewalls.
The merging model requires each detector to produce the same output given the same message and world
model; a bijective translation from world model to detector-internal data representation was assumed
for this model. This is also the model discussed in our earlier work [115].

The stateless model assumes all detection results depend exclusively on the incoming message it-
self. As messages are typically individual packets with known size and contents, these restrictions will
generally limit the complexity of the detectors. The expectation was that plausibility and behavioral
detectors would be compatible with these restrictions, based on our initial literature review. However,
two developments made clear that this would not be the case: first, our focus moved to also include
data received from the vehicle-internal bus systems, which Maat integrates seamlessly as if they were
normal messages. Many plausibility mechanisms rely on such data for their checks (e.g., a vehicle’s local
position), and therefore a purely stateless implementation of such detectors is impossible. The other
development was that plausibility checks often implicitly assume that previously received information
is trustworthy, i.e., detectors need to be stateful. Examples of this include checking the plausibility of
speed values by validating movement (i.e., computing the distance moved over the time between two
messages and comparing it to the claimed speed).

The merging model was a much more flexible approach that we took after it turned out the stateless
model was not going to be sufficiently reliable. In this model, Maat’s processing overhead is minimal,
and every incoming message is simply passed to each detector instantaneously. Although Maat with
this model preserves an internally consistent world model, a translation function would filter everything
except that data which is relevant to the detector. Using an inverse translation, a detector could then
output results and store its state in the world model, making detectors much more independent processes.
If any other messages have arrived in the intermediate time, Maat would inform the detector, and each
of these could then revise their decision as needed. However, this model is very strongly dependent on
the order of execution and the relative execution speed; this model does not necessarily even provide
causal consistency. Depending on how the revision of decisions is implemented, this also requires faster
detectors and generates additional load if many messages come in at the same time.

In Maat, the merging model is adopted; however, it turns out that this model has difficulties when
messages come in faster than they can be processed by detectors. In this situation, the question arises
whether (a) messages received before the current message are only visible after having been processed
by all detectors, or (b) messages are instantly visible to all detectors and applications. Both options
have advantages and disadvantages; for our current prototype, we implement (a), which means that the
results will always be consistent, but it may take longer to process (since all detectors have to finish
before starting the processing of the next message). In the case of (b), if a detector D1 uses message
M0 in its detection process for M1, before another detector D2 has finished its detection of M0, then
the resulting world model may be inconsistent if D1 incorrectly assumes M0 is valid. For example, if
D1 decides M1 is invalid because M0 is valid, after which D2 decides M0 is invalid, the world model will
only have evidence of invalid messages. In other words, the information that D1 assumed M0 is valid
is lost. Because this is a common pattern in detection, we decided that (a) is the better option for our
prototype.

One notable alternative we considered and discarded to resolve these challenges is a tree-structured
versioning system. In this model, detection results can be written at any time, rather than waiting for
every detector to finish, and they must contain a reference to a version associated with the read operations
that were performed during detection. This reference was generated by giving every detector the same
snapshot on which they perform their detection, giving the same view to every detector. This model
also allows new incoming messages to be pre-processed and sent to every detector before they complete
their detection, as described for the merging model. However, the writes now do not provide a consistent
time line: thus a tree-structured versioning model is required to be able to reconstruct the world model
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state on which a detection result is based. Although it is technically possible to generate merge messages
for detectors, this greatly increases the implementation effort required for detectors. More importantly,
initial experiments have shown that this model has much more significant performance overhead, due to
the volume of extra messages generated. It also greatly increased the risk of live-lock occurrence, freezing
the entire world model, due to implementation errors in a single detector.

Consistency in Maat

To make the entire processing chain reproducible, in that the same message added to the same world
model results in the same new world model version, there are two important requirements missing from
the system so far. The first is the assumption that all detectors included in the system are deterministic.
This means that a detector will always output the same result given its state and the diff, i.e., change
to the world model, which is defined by the previous state world model and the new message. To see
why this is reasonable, consider a detector that does not satisfy this requirement: this detector could
classify the same message differently under the same circumstances. Such probabilistic decisions can not
be reproduced reliably, and therefore are not suitable for a multitude of goals that Maat aims for, such
as revocation. Although future work could explore these types of decisions for other applications, where
responsiveness is more important than complete precision, for this thesis we will assume determinism.

The second assumption needed for reproducibility depends on whether detectors use the results of
other detectors. If each detection result depends only on the detector’s internal state, the received mes-
sage, and any previously received data4, then no additional assumptions are required. In this case, a
merging model could be used: every detector independently computes its results and the snapshot man-
ager updates the world model graph by simply adding these edges (without additional synchronization).
This enables immediate access to each detector’s results as soon as they are written: the snapshot man-
ager does not wait for completion of all detectors. However, there are a number of different detectors
in the literature whose opinion depends on other detectors, for example, on which of two data items is
more trustworthy. In those cases, it is necessary for the snapshot manager to wait for every detector
to terminate before writing all results. If it would process new messages before writing the completed
detection results, the termination order of detectors would cause the results to become indeterministic.
Thus, in Maat’s current design, processing is done strictly in-order: the linking, detection and writing
operations are performed through a single write, and the next linking only starts after the previous write.

4.3 Misbehavior Reporting & Revocation

Maat maintains a history of received messages in the world model that applications can access. A
natural next step is to enable a reporting process that uses this history of messages in order to report
misbehavior to a certificate managing authority. In this section, we briefly discuss misbehavior reporting,
explore how Maat could be used for evidence management, describe a message format adopted from
Bißmeyer et al. [89], and discuss the limitations of this approach. This discussion is adapted from a
recently published paper [157].

4.3.1 Misbehavior Reporting

To report attacks, Bißmeyer et al. [89] already defined a data sharing approach through misbehavior
reports. These reports are created independently and signed by every vehicle that detects misbehavior.
In essence, they consist of a list of suspicious vehicles that are to be reported, a list of nearby vehicles,
a trust statement for each vehicle, and signed evidence. The evidence is a list of messages from the
suspicious sender (e.g., a list of signed beacon messages). The trust statement consists of a trust value,
a duration, a distance, and the first message received from the associated vehicle. Notice that there
is no information regarding how the trust statement is arrived at. To limit the size of these messages,
the authors suggest that the reporting node can choose to leave out neighbors to save bandwidth. The
reports are transmitted to a central authority, where they are processed further.

A central authority, such as the misbehavior authority that is part of the proposed SCMS by
Brecht et al. [168], is then responsible for handling the misbehavior detection and eventual revocation

4To be precise, this means only on entities, data items and edges between them.
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Figure 4.3: Sample structure of a misbehavior report

globally. Since reports may be delayed due to intermittent connectivity, this process is not suitable for
immediate response, but rather designed to behave in a forensic way. Reports are signed using pseudonym
certificates, enabling the authority to validate their integrity. Depending on the specific model of the
authority, it may also be possible to resolve the pseudonyms to real identities before processing them,
in order to protect against bad mouthing attacks. In the proposal by Bißmeyer et al. [89], the authority
can also validate the signatures of the messages included in the report, but it cannot directly verify the
correctness of the trust values or the data in the messages or the report. Bißmeyer et al. essentially
describe a transitive trust mechanism that the authority uses to determine a final trust in each node
involved in these reports. Note that the actual evidence is never used in this process, except for the
validation of the reports. In this process, a lot of data-centric information is thus lost, which could be
useful for detection by the authority.

4.3.2 Sub-Graphs in Maat

As discussed previously, whenever a query is performed within Maat to validate the trustworthiness of
either data or nodes, a list of paths is generated that represents all the available information about this
vertex. This includes not only the trust values associated with each vehicle, as in Bißmeyer’s reports, but
also the different detection results associated with each vertex. The sub-graph produced by combining the
list of paths is essentially all the information that the reporter has about this vehicle. Furthermore, if all
the properties of detectors that are necessary for consistency are satisfied, the authority can completely
reproduce the detection given the evidence. This is particularly useful if the detection result of the
reporter is very uncertain, since it enables the authority to re-use the limited information from several
reporters to draw conclusions that would otherwise not be feasible. In our work in this direction, we
developed a similar message format for misbehavior reports, which is illustrated in Figure 4.3.

In addition to being able to reproduce results, transmitting the entire sub-graph also enables easy
integration at the authority. As long as detectors for distinct vehicles are given distinct names, the
sub-graphs from different vehicles can be completely combined into a single graph. This single graph
is then essentially a Maat instance running at the authority, which works in exactly the same way as
Maat itself. This means that the authority can also execute additional detectors, such as those that rely
on computational power not available in vehicles. The results can seamlessly be combined with results
received from vehicles through the fusion process detailed in the next chapter. It may also be possible
to use the sub-graph exchange to perform cooperative detection (i.e., reporting locally), but this is likely
not feasible due to bandwidth requirements.

4.3.3 Limitations

This also brings us to the limitations that should be outlined with regards to sub-graph exchange.
Although this approach provides a lot of information, this also necessarily implies that the message size
will increase significantly. One can imagine optimizations similar to those that apply to Maat in general,
such as pruning the graph by filtering out data with negligible effects on the results. However, the
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sub-graph will still be too large, especially when multiple reports are generated with respect to the same
vehicle, but due to different events.

Another potential issue is that of computational redundancy. If the authority would completely re-
validate the detection process by generating the opinions of each vehicle based on the evidence, this
checks the integrity of the report, but also repeats all computation already performed by the vehicle.
One might argue that at this point, one might as well simply transport the evidence to the authority
and do the detection there. Whether this is significant depends completely on the volume of reports that
would occur in a system where the vast majority of vehicles is benign. It may be possible to optimize
this by performing spot checks on report integrity: however, this potentially enables the revocation of
benign vehicles, and thus should be used with care.

Finally, an important limitation is that any data that originates from the vehicles’ sensors is not
signed, and therefore difficult to include in reports. Although Maat will allow the exchange of this data,
these parts cannot be validated, yet they are often the basis for high-quality detection output. It is
imaginable that future systems may have in-vehicle sensors that sign their data in some way, but this
raises a whole new spectrum of key management and privacy-related questions.

Although sub-graph reporting may be a viable and interesting approach for misbehavior detection
in the future, much of its efficacy depends on the detection process. In particular, the volume of false
positives, the amount of attackers in the network, as well as the bandwidth for future systems are
parameters that are not clear at this time. Since these parameters are the primary factors for the
reliability of a reporting procedure based on sub-graphs, we instead focus on research that advances the
state of the art in this regard.

4.4 Prototype

For the evaluation of Maat, a prototypical implementation was designed. The Maat prototype used for
this thesis is an open source project, implemented in Java 8, using the JGraphT library to represent the
graph. The versioning is implemented through a property graph (a type of graph where vertices and
edges can contain arbitrary key-value pairs), where the properties are included in a standard HashMap.
Maat’s development also involved a large volume of bug fixes and implementation effort for the subjective
logic library; we discuss these changes in the next chapter. Implementation work was also done for
individual detectors; these are shipped directly with Maat. Maat’s source code is available on Github5;
the implementation of specific components will be discussed in the respective chapter in which evaluation
is performed. Note that Maat is currently a research prototype; the primary goal of this implementation
is to show the feasibility of this design, and to provide a basis on which the evaluation part of this
thesis could be based. As this evaluation is focused on detection performance, the entire software design
is centered around evaluation, not around runtime performance or memory use. We consider it future
work to assess the runtime performance of Maat: this dissertation aims to answer questions of general
feasibility, not real-world performance.

4.4.1 Limitations

The prototype implementation has several limitations compared to the design described above. These
limitations are briefly discussed in this section; their impact on results will be described in the evaluation
part of this thesis.

Edge caching

One significant computational optimization that we propose but do not implement is the use of edge
caching. As discussed previously, the idea behind edge caching is that we use edges between the MDS
and the data and entities to cache intermediate detection results for every version. However, this conflicts
with one of the main goals of the prototype, namely to compare different ways of performing data fusion
(as will be explained in detail in the next chapter). We implemented these fusion operators in Maat, and
the prototype outputs all different results that can be obtained with these different operators. Because
we did not aim for runtime or memory performance as a primary goal, we simplified the prototype and
do not implement this optimization, as it does not affect detection performance.

5https://github.com/vs-uulm/Maat
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Aggregation & Dissemination

Although the initial ideas for Maat come from the field of secure aggregation, our development has
taken a turn towards more concrete applications. Because the majority of real-world applications of
VANETs are primarily centered around beaconing, we focus on this method of information transfer.
Since beaconing is relatively well-studied, we were able to work with a broader spectrum of detection
mechanisms. As discussed in earlier sections of this chapter, we provide various conceptual ideas that
can be used to integrate aggregation behavior into Maat seamlessly.

The same applies for dissemination; Maat’s API can be used to extract and transmit the desired
aggregated information. However, the added value of such an application is quite limited; in particular,
the lack of publicly accessible implementations would make evaluation of Maat practically impossible.
Therefore, we instead focus on reliable detection of misbehavior on beacons: much of those results are
used anyway to locally exclude malicious actors from an aggregation process [128].

4.4.2 Maat Prototype as Evaluation Toolkit

As by now discussed quite extensively, the primary focus of the Maat prototype is evaluation of detectors.
Because of the way Maat executes its detectors, it is also suitable for the comparative evaluation of these
detectors. With some minor modifications, Maat can be used as a framework for comparing misbehavior
detection mechanisms, as well as the extensive analysis of the influence of various detector parameters
(e.g., thresholds) on the detection performance of this detector and Maat overall. We extensively apply
this process in the evaluation part of this thesis, and therefore briefly discuss the process here.

Figure 4.4 shows the overall evaluation process that can be used for detector studies. By simply
exchanging the detectors and inputting the same message logs to Maat, one can easily generate precision-
recall graphs that show the overall behavior of a detector for different thresholds. As far as we are aware,
our dataset and evaluation flow is the first publicly available comparative study of detector performance.
In particular, because Maat is open source, anyone can add a new detector, or extend the dataset with
new attacks and test those attacks against the detectors in Maat.
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Figure 4.4: VeReMi’s workflow – the detectors on the left side of the graphic can simply be replaced
by new detectors; the simulation can be replaced by new simulations, resulting in an updated version of
VeReMi.

Similarly, the attack implementations used for these experiments are public, and therefore this eval-
uation workflow can be used to design new attacks against any detection mechanisms that are publicly
available. It is our hope that this evaluation toolkit functionality will enable scientific reproducibility of
evaluation results. The workflow discussed here is part of our evaluation work, for which we designed
a publicly available dataset: this dataset greatly reduces the amount of computational effort required
to do reliable evaluations. We discuss this in detail in Section 8.1, where we introduce this dataset and
show its application as part of the evaluation of the detectors we implemented for Maat. These detectors
will be described in Chapter 6; however, we first describe how detector decisions are fused in the next
chapter.
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Chapter 5

Trust & Fusion

This chapter describes the details of fusion operations and standard trust mechanisms in subjective
logic. These provide the foundations through which Maat combines the paths obtained by searching from
the decision node to a specific leaf, performing misbehavior detection. As briefly described in Section
3.2.2, these paths are combined through subjective logic operations: traversal of paths corresponds to a
transitive trust operator, while combination of paths can be performed through one of subjective logic’s
many fusion operations. In this chapter, we first focus on subjective logic, including several contributions
that have previously appeared in [171]. We discuss the actual application of these operations in more
detail after describing these contributions. Finally, we discuss the difference between trust and reputation,
and sketch how existing trust schemes can be integrated into Maat.

5.1 Subjective Logic Fundamentals

This section provides the necessary fundamentals of subjective logic. This discussion is based on the book
by Audun Jøsang, who originally described this logic framework for distributed trust management [144].
We only highlight the relevant details for our work, which is mostly based on the first five chapters,
introducing the relevant mathematical details, as well as chapters 12 and 14, which respectively describe
fusion and trust.

In particular, this section introduces the mathematical foundation of subjective logic and the hyper-
Dirichlet model, which is an extension of the Dirichlet multinomial model. In addition, we introduce
the respective notation in both settings, provide some intuition with regards to the interpretation, and
describe a bijective map between subjective logic and the hyper-Dirichlet model.

5.1.1 Binomial Opinions

Binomial opinions [144, Ch 3.4], also referred to as subjective logic opinions or subjective opinions,
express belief bX(x) ∈ [0, 1] over the possible values x of a random variable X, as well as an uncertainty
uX and a base rate aX(x) ∈ [0, 1] for every possible value. There is also an additivity constraint:
uX +

∑
x∈X bX(x) = 1. In the binomial case, as the name implies, there are only two possible values in

X, often named x and x̄ (or sometimes also true or false). T therefore the belief function bX(x) is often
replaced by a belief b and a disbelief d (representing bX(x) and bX(x̄), respectively), and the additivity
requirement becomes b+d+u = 1, as discussed in [115]. Similarly, the base rate function aX(x) is typically
replaced by the base rate a = aX(x), which implicitly defines the base rate of aX(x̄) = 1−a = 1−aX(x),
since the base rate represents an a-priori probability (i.e.,

∑
x∈X aX(x) = 1). Note that binomial opinions

are mathematically merely a special case of multinomial opinions, where |X| = 2.

Definition 6 (Binomial Opinion). Let X ∈ X be a random variable over the binary domain X = {x, x̄}.
A binomial opinion ωAX held by A over X describes the subjective assignment of belief by A to the
outcome of X, consisting of an ordered triplet ωAX = (bAX , u

A
X ,a

A
X). Here, bAX : X → [0, 1] is the belief

mass distribution over X, uAX ∈ [0, 1] represents the lack of evidence, and aAX : X→ [0, 1] is the base rate
distribution, with the additivity requirements that 1 = uAX +

∑
x∈X bAX(x) and

∑
x∈X aAX(x) = 1.
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An equivalent formulation is given by quadruplet of numbers, ωAX = (bAX , d
A
X , u

A
X , a

A
X), where bAX =

bAX(x), dAX = bAX(x̄), aAX = aAX(x). The confidence of this opinion cAX = 1 − uAX = bAX + dAX Due to the
additivity requirement, storage of uAX is optional.

5.1.2 Multinomial Opinions

Multinomial opinions [144, Ch 3.5] express belief bX(x) ∈ [0, 1] over the possible values x of a random
variable X, as well as an uncertainty uX and a base rate aX(x) ∈ [0, 1] for every possible value. The
conceptual purpose of multinomial opinions is to describe the available evidence or belief in each possible
value x ∈ X in the domain of X. We first provide a formal definition of multinomial opinions, before
describing their application and interpretation with an example.

Definition 7 (Multinomial Opinion). Let X ∈ X be a random variable over the finite domain X. A
multinomial opinion ωAX held by A over X describes the subjective assignment of belief by A to the
outcome of X, consisting of an ordered triplet ωAX = (bAX , u

A
X ,a

A
X). Here, bAX : X → [0, 1] is the belief

mass distribution over X, uAX ∈ [0, 1] represents the lack of evidence, and aAX : X → [0, 1] is the base
rate distribution, with the additivity requirements that 1 = uAX +

∑
x∈X bAX(x) and

∑
x∈X a

A
X(x) = 1.

Confidence is defined analogously to that of binomial opinions: cAX = 1− uAX .

If the random variable X is the outcome of tossing a potentially weighted die that uses colors instead
of numbers, then its domain X contains the possible color values (e.g., red, green, blue, and so on).
A multinomial opinion then assigns a belief mass to each color. Initially, the uncertainty uX of this
distribution can be set to 1, which is referred to as a vacuous opinion. The base rate of this opinion is
the assumption that the die is not weighted, i.e., that all outcomes are equally likely: a(x) = 1/|X| = 1/6
for all x ∈ X. It is also possible to have opinions that assign all the available mass to belief, i.e.,
uX = 0, which is referred to as a dogmatic opinion. This represents an edge case, since by definition zero
uncertainty means that there is absolute certainty in the belief distribution, meaning the base rate has
no bearing on the outcome at all.

To see how multinomial opinions can be applied, consider the die example above. By using opinions
as evidence accumulators, each sampling of the random variable (i.e., throwing the die and adjusting
the belief) increases the available evidence and thus the corresponding belief in the given outcome.
The expected outcome of our opinion projects the belief and the uncertainty to a probability PX(x)
by distributing the uncertainty over the potential values in X according to the base rate a(x). More
formally [144, Ch. 3]:

PX(x) = bX(x) + aX(x) · uX
Multinomial opinions are often useful to represent evidence from a set of different sources A, as com-

mon in trust management and data fusion. Referring again to the die example above: if the observers
have some kind of color blindness, or the lighting conditions are sub-optimal, one can imagine that dif-
ferent observers have different opinions about the same observation. This is where multinomial opinions
can be used by these observers to agree on the outcome of specific observations, as well as estimation
of the real properties of the die (by observing repeated experiments). These operations can be achieved
with fusion operations, as described in Section 5.2.1. One challenge for multinomial opinions is that it
is not possible to represent an observer that cannot distinguish two colors in the above example (e.g.,
red-green color blindness), other than assigning the same amount of evidence to both values. However,
this assignment implies that the relative frequency of red and green is the same, while in fact what we
want to represent is the inability to distinguish between these variables. This is where hyper opinions
are useful.

5.1.3 Hyper Opinions

Hyper opinions [144, Ch. 3.6] are the natural extension of multinomial opinions, which allow belief
assignment to composite values. For example, taking x1, x2, x3 ∈ X, a multinomial opinion can assign a
belief b(x1) = 0.1, b(x2) = 0.3, b(x3) = 0.4, indicating the relative evidence between these three possible
values. Some situations require the assignment of belief to composite values, e.g., b(x1 ∪ x2) = 0.4,
stating that there is evidence for either x1 or x2, without specifying the relative evidence between them.
This is exactly the example we gave above with red-green color blindness, with x1 = red and x2 = green.
Another such example was given by Hankin [50] in the context of Dirichlet hyper-Probability Density
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Functions (hyper-PDFs), who uses the example of relative strengths of tennis players in a tournament.
In their example, the outcome X = xi means i wins a tournament, and the belief assignment distributes
the available evidence over the players. Assigning belief to x1 ∪ x2 represents evidence that player 1 or
2 will win, but does not make statements about the relative probabilities between player 1 and 2.

Definition 8 (Hyper Opinion). Let X ∈ X be a random variable over the finite domain X, with the
power set P(X) and the reduced power set R(X) = P(X) \ {X, ∅}. A hyper opinion ωAX held by A over X
describes the subjective assignment of belief by A to the outcome of X, consisting of an ordered triplet
ωAX = (bAX , u

A
X ,a

A
X). Here1, bAX : R(X) → [0, 1] is the belief mass distribution over R(X), uAX ∈ [0, 1]

represents the lack of evidence, and aAX : X→ [0, 1] is the base rate distribution over X, with the additivity
requirements that 1 = uAX +

∑
x∈R(X) bAX(x) and

∑
x∈R(X) aAX(x) = 1. Confidence is defined analogously

to that of binomial opinions: cAX = 1− uAX .

Remark 1 (Base rate over singleton values). Note that the base rate distribution is still over X here,
meaning that X takes values from X, not from P(X), and thus a hyper opinion has (2k + k − 3) degrees
of freedom for a domain X of cardinality k, as discussed in [144, Ch. 3, p. 40].

5.1.4 Dirichlet Distributions

Both multinomial and hyper opinions are directly related to Dirichlet distributions. The traditional
Dirichlet distribution is defined by a vector of k parameters, αX , resulting in the notation Dir(pX , αX).
This model has wide statistical applications; for our purposes, it will ground interpretations of opinions
in a statistical sense. The idea is that the Dirichlet distribution represents a second-order probability
distribution over a random variable X. This distribution is used to model the belief in each possible
outcome. For the foundations of subjective logic, this probability density function (PDF) is adapted
to an evidence-based formulation by setting the vector of parameters to represent the evidence for the
possible outcomes of X. This is done by selecting a non-informative prior weight W and configuring the
strength parameters αX to be rX + aXW , where rX(x) ≥ 0 for all x ∈ X. This modification can then
be used as a statistical basis for a subjective opinion, and is denoted DireX(pX , rX ,aX), where rX is
termed the evidence vector and aX is the base rate distribution. The non-informative prior weight is set
to W = 2, resulting in a uniform base rate distribution, as discussed in previous work [144, 160]. The
PDF is then written as (compare [144, Ch. 3, p. 32-33]):

DireX(pX , rX ,aX) =
Γ
(∑

x∈X(rX(x) + aX(x)W )
)∏

x∈X Γ(rX(x) + aX(x)W )
·
∏
x∈X

pX(x)rX(x)+aX(x)W−1 (5.1)

where rX(x) + aX(x)W ≥ 0 and pX(x) 6= 0 if rX(x) + aX(x)W < 1.
This is the multinomial Dirichlet model, as also discussed in [160]. Hankin [50] formulated an exten-

sion of this model that allows evidence to be assigned to composite values, similar to hyper opinions,
referred to as Dirichlet hyper-PDFs. Jøsang [144, Sec. 3.6.3] defines the evidence-based formulation
of those hyper-PDFs, summarized as follows (where the superscript H clarifies that the domain is the
hyper domain):

DireHX (pHX , rX ,aX) =
Γ
(∑

x∈R(X)(rX(x) + aX(x)W )
)

∏
x∈R(X) Γ(rX(x) + aX(x)W )

·
∏

x∈R(X)

pHX(x)rX(x)+aX(x)W−1 (5.2)

where rX(x) + aX(x)W ≥ 0 and pHX(x) 6= 0 if rX(x) + aX(x)W < 1.
Jøsang [144, Sec. 3.6.5] also describes the relationship between the PDF of the hyper probability

distribution pHX and the probability distribution pX : we refer interested readers to this work for a
detailed discussion of the interpretative differences between these cases. For this work, it suffices that
there is a well-defined grounding of both multinomial and hyper opinions in the Dirichlet multinomial
model and the Dirichlet hyper-PDF model, respectively.

1The reason the reduced power set is used here is related to how hyper opinions are defined. The intuition is that a
belief assigned to the empty set represents belief that the event X will not take place, while the belief in X represents belief
that any of these elements may be the real value taken by X; this is intuitively the same as uncertainty.
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5.1.5 Mapping Opinions to Dirichlet (H)PDFs

We now introduce the relation between opinions and Dirichlet (H)PDFs. There is a bijective map between

Dirichlet HPDFs of the form DireH,AX (pHX , r
A
X ,a

A
X) and hyper opinions ωAX = (bAX , u

A
X ,a

A
X), as shown in

Figure 5.1 (compare [144, Def. 3.9]). A similar map can be defined between multinomial opinions
and Dirichlet PDFs, where the range of the mapping is constrained to x ∈ X instead of x ∈ R(X).
Equivalently, for multinomial opinions and Dirichlet PDFs, the bijective map in Figure 5.1 applies where
r and b for all composite values is defined as 0.

 bAX(x) =
rAX(x)

W+
∑

x∈R(X)
rAX(x)

uAX = W
W+

∑
x∈R(X)

rAX(x)

 1-to-1←→


For uAX 6= 0: rAX(x) =

WbAX(x)

uAX
1 = uAX +

∑
x∈R(X)

bAX(x)

For uAX = 0: rAX(x) = bAX(x) · ∞
1 =

∑
x∈R(X)

bAX(x)


Figure 5.1: Bijection between hyper opinions (left) and Dirichlet HPDFs (right), as defined in [144].

For both the multinomial and the hyper opinion setting, there is an important edge case in this
bijective map when the uncertainty is 0. As previously discussed, this semantically means that the belief
distribution is “known”, which implies there is infinite evidence. We briefly discuss the intuition behind
this concept, as it is essential for the corresponding edge cases in the fusion operations, both in previous
work [160] and in our formulations below. This is equivalent to taking the limit limuAX→0 of the case

for uAX 6= 0, giving the expression in Figure 5.1. To distinguish between different evidence variables’
frequencies, the notion of relative degrees of infinity is used [52]. This intuitively corresponds to the
relative likelihood of the different values for the variable X. For a detailed discussion of these conceptual
notions, we refer interested readers to earlier work by Jøsang et al. [52, Sec. 4].

5.2 Fusion Operations

5.2.1 Multi-source Fusion

Multi-source fusion refers to the combination of opinions from multiple sources. Intuitively, this can be
understood as a set of actors A coming together to agree on a common conclusion (ω◦AX ), using some
fusion operator ◦. This operator specifies precisely how to combine the information represented by each
actor’s subjective opinion. For operators that are both commutative and associative, ωA1

X ◦ω
A2

X ◦ω
A3

X . . .
is well-defined, and therefore fusion is straight-forward. However, the fusion operators defined as binary
operators in [144, Ch. 12] are not all associative, i.e., in general, ωA1

X ◦ (ωA2

X ◦ ω
A3

X ) 6= (ωA1

X ◦ ω
A2

X ) ◦ ωA3

X ,
motivating the need to generalize the operators to accept arrays of opinions that are merged through
fusion. This section defines multi-source fusion operations to generalize the operators not discussed
in [160].

5.2.2 Cumulative and Averaging Belief Fusion

In previous work, the authors [160] propose multi-source fusion for the CBF and ABF operators. The
definitions provided by the authors for CBF (Equations 16-19) and ABF (Equations 32-35) require some
adjustments: the cases defined in the original paper are incorrect and lead to division by zero. Equation
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16 represents the case where ∃uAX 6= 0, and states:

b
�(A)
X (x) =

∑
A∈A

(
bAX(x)

∏
Aj 6=A

uAX

)
∑
A∈A

( ∏
Aj 6=A

uAX

)
− (N − 1)

∏
A∈A

uAX

(5.3)

u
�(A)
X =

∏
A∈A

uAX

∑
A∈A

( ∏
Aj 6=A

uAX

)
− (N − 1)

∏
A∈A

uCX

(5.4)

Note here that if at least two dogmatic opinions are fused with any amount of non-dogmatic opinions,
the case condition is satisfied. However, if uAX = uBX = 0 and uC 6= 0, Equation 5.4 becomes:

u
�(A)
X =

0 · 0 · uCX
(0 · 0) + (0 · uCX) + (0 · uCX)− (3− 1) · 0 · 0 · uCX

=
0

0
(5.5)

The equations for ABF have essentially the same issue. In general, division by zero occurs when at least
one opinion has a non-zero uncertainty, while at least two (other) opinions have zero uncertainty: this
leads to Case I in the original formulation, but in the corresponding equations, all the products in the
divisions for b and u are zero. Therefore, a straight-forward correction is to require that all uncertainties
to be zero whenever applying Case I. One should then also modify the condition for Case II accordingly,
and additionally modify the equations such that any non-dogmatic opinions are discarded. This makes
sense intuitively, since any non-dogmatic opinion represents finite evidence in the Dirichlet evidence PDF
representation (through the bijective map of Figure 5.1), while a dogmatic opinion represents infinite
evidence. Therefore, Case II discards finite evidence and essentially only combines the dogmatic opinions.
The original authors have since published a revised version of the paper on-line 2, which corrects the
error by adjusting the case definitions. We refer to their corrected article for the details.

Epistemic Cumulative Belief Fusion

Although it was not explicitly discussed in [160], a multi-source variant of epistemic cumulative belief
fusion can also be derived from the aleatory form discussed above. The difference between aleatory
and epistemic fusion is the type of knowledge represented by the opinion; the aleatory variant describes
the fusion of information with respect to specific observations, while the epistemic variant describes the
fusion of knowledge. For epistemic cumulative belief fusion (e-CBF) of multiple opinions (as opposed to
aleatory CBF), the only reasonable approach is then to first apply the multi-source aleatory cumulative
fusion described in [160], until all relevant epistemic knowledge has been cumulated. Only when a
decision needs to be made should uncertainty maximization (as discussed in [144, Ch. 12]) be applied to
the resulting opinion. To see why this is reasonable, consider that e-CBF is used in an on-line fashion,
fusing two opinions together before fusing them with a third. Fusing an e-CBF result with epistemic
knowledge from a third source skews results in favor of this third source, since the uncertainty controls
how much of the belief mass of the new epistemic evidence is considered for the final result. Instead, one
would normally expect that the three opinions are considered equally in the fusion process. Similarly, in
practice, an analyst would first combine all the available knowledge (i.e., retrieve all relevant epistemic
evidence from all sources), and only then make a decision – if more information becomes available later
on, one would expect the analyst to re-do the computation, rather than fuse the uncertainty-maximized
result with the new information. Thus, indeed, e-CBF should be performed by applying a-CBF to all
opinions, and then the result should be uncertainty-maximized.

5.2.3 Belief Constraint Fusion

Belief constraint fusion (BCF) is the extension of Dempster’s rule of combination to hyper opinions.
Although Dempster’s rule of combination is associative, this rule does not consider the base rate, as

2https://folk.uio.no/josang/papers/JWZ2017-FUSION.pdf

63



Dempster-Shafer theory does not foresee such base rate distinctions. If the base rate is not the same
for all inputs, the operator defined by Jøsang [144, Ch. 12.2] is not associative, as pointed out by the
author: we thus require a multi-source formulation of this operation. This is provided by the following
definition:

Definition 9 (BCF of opinions for multiple sources). Let A be a finite set of actors and let ωAX =
(bAX , u

A
X ,a

A
X) denote the multinomial opinion held by A ∈ A over X. We define the belief constraint

fusion of these opinions as the opinion ω&A
X = (b&A

X , u&A
X ,a&A

X ) where

b&A
X (x) = m⊕A(x)

u&A
X = m⊕A(X)

a&A
X (x) =


∑
A∈A

aAX(x)(1−uAX)∑
A∈A

(1−uAX)
, for

∑
A∈A

uAX < |A|
∑
A∈A

aAX(x)

|A| , otherwise

Here, the belief mass is merged through Dempster’s rule of combination [2, Ch. 3.1]:

m⊕A(x) = (m1 ⊕m2 ⊕ . . .⊕m|A|)(x)

where

(mi ⊕mj)(∅) = 0

(mi ⊕mj)(x) =

∑
y∩z=x

mi(y)mj(z)

1−Ki,j
, for x 6= ∅

and

Ki,j =
∑
y∩z=∅

mi(y)mj(z)

Here, mi(x) refers to i’s belief mass assignment to x in Dempster’s setting (see also [2, Ch. 3.1]).

This definition essentially corresponds to the application of a map between the individual opinions to
DST, applying Dempster’s rule, and mapping back again. Although it is obvious that this is well-defined
for the belief and uncertainty (since the translation is one-to-one [144, Ch. 5]), the base rate needs
separate consideration. The special case where all the base rates are the same, as implicitly assumed
by DST (i.e., that aX(x) = 1/|X|), also holds trivially. However, subjective logic technically allows for
different base rates: these are combined as a confidence-weighted average (first case in the definition
above), as defined by Jøsang [144, Ch. 12]. This only works if there is at least one non-vacuous opinion
(i.e., ∃x ∈ X, A ∈ A : bAX(x) 6= 0): if the confidences of all opinions are zero, the confidence is equal for all
opinions, and therefore the most meaningful combination of potentially distinct base rates is computing
their average. Note that both cases preserve the standard setting, where base rates are equal across all
opinions (including the output).

5.2.4 Weighted Belief Fusion

Audun Jøsang defined the weighted belief fusion of two opinions in [144, Def. 12.8, p. 232], which we
extend here to a multi-source variant as follows:

Definition 10 (WBF of opinions for multiple sources). Let A be a finite set of actors and let ωAX =
(bAX , u

A
X ,a

A
X) denote the multinomial opinion held by A ∈ A over X. Then we define the weighted belief

fusion of these opinions as the opinion ω�̂AX = (b�̂AX , u�̂AX ,a�̂AX ) as follows:
Case 1: (∀A ∈ A : uAX 6= 0) ∧ (∃A ∈ A : uAX 6= 1)
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b�̂AX (x) =

∑
A∈A

bAX(x)
(
1− uAX

) ∏
A′∈A,A′ 6=A

uA
′

X( ∑
A∈A

∏
A′ 6=A

uAX

)
− |A| ·

∏
A∈A

uAX

u�̂AX =

(
|A| −

∑
A∈A

uAX

)
·
∏
A∈A

uAX( ∑
A∈A

∏
A′ 6=A

uAX

)
− |A| ·

∏
A∈A

uAX

a�̂AX (x) =

∑
A∈A

aAX(x)
(
1− uAX

)
|A| −

∑
A∈A

uAX

Case 2: ∃A ∈ A : uAX = 0. Let Adog = {A ∈ A : uAX = 0}, i.e., Adog is the set of all dogmatic opinions
in the input.

b�̂AX (x) =
∑

A∈Adog

γAXbAX(x)

u�̂AX = 0

a�̂AX (x) =
∑

A∈Adog

γAXaAX(x)

where γAX = lim
u�̂AX→0

uAX∑
A′∈Adog

uA
′

X

Note that γAX is defined by this limit due to the bijective map (analogous to [144, Ch. 12] and [160]).
Case 3: ∀A ∈ A : uAX = 1

b�̂AX (x) = 0

u�̂AX = 1

a�̂AX (x) =

∑
A∈A

aAX(x)

|A|

Remark 2 (Infinite evidence). In Definition 10, case 2 describes the resulting combined belief using the
relative weight γAX per actor with infinite evidence. This is analogous to the notion of relative infinities
in the bijective map discussed in Section 5.1.5. We exclude all finite evidence parameters here, by only
considering the actors with dogmatic opinions: all non-dogmatic actors will have finite (and therefore
negligible) evidence.

Remark 3 (No evidence). If no evidence is available (Definition 10, case 3) in any of the inputs, this
operation would divide by zero (since uAX = 1 for all actors, making the nominator 0 in case 1). However,
if no evidence is available, the fused opinion should obviously also have no evidence: this justifies the
definition in case 3.

We remark that confidence-weighted combination of base rates as defined in Definition 10 maintains
the intuitive property that if all base rates of inputs are equal, the output has the same base rate,
regardless of the case. Intuitively, since the base rate represents the belief in absence of information, this
should always be the case, but the theory allows actors to have different base rates, in which case they
are averaged.

This derivation should intuitively correspond to that derived from the Dirichlet HPDF, as shown
in [144, Thm. 12.4] for two opinions. In short, this theorem derives that the weighted belief fusion
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operator for two opinions is equivalent to confidence-weighted averaging of the evidence parameters of
the two corresponding Dirichlet HPDFs. We should thus show that our definition corresponds to the
confidence-weighted averaging of the evidence parameters of all opinions. This is defined as:

DireHX (pHX , r
�̂A
X ,a�̂AX ),where r�̂AX (x) =

∑
A∈A rAX(x) · (1− uAX)∑

A∈A(1− uAX)
(5.6)

Theorem 1. Our definition of weighted belief fusion of opinions for multiple sources is compatible with
weighted belief fusion of Dirichlet HPDFs.

Proof. We want to show that the WBF of multiple Dirichlet HPDFs corresponding to subjective opinions,
when mapped back to a subjective opinion yield the formulas in Definition 10. We show only the
derivation of u�̂AX , where uAX 6= 0 for all A ∈ A. The other derivations follow the same basic pattern and
do not provide any additional insights.

Using the mapping between Dirichlet HPDFs and hyper opinions from Figure 5.1 we can compute
the evidence of multiple fused HPDFs corresponding to hyper opinions as follows.

r�̂AX (x) =

∑
A∈A

rAX(x) · (1− uAX)∑
A∈A

(1− uA)

=

∑
A∈A

(
bA(x)(1− uAX) ·

∏
A′ 6=A

uAX

)
∑
A∈A

(1− uAX)
∏
A∈A

uAX

Again, using the mapping in Figure 5.1 we know that the uncertainty of the fused HPDFs is

u�̂AX =
W

W +
∑

x∈R(X)

r�̂AX (x)

Plugging in r�̂AX (x) we can cancel W and receive

u�̂AX =

(∑
A∈A

(1− uAX)
∏
A∈A

uAX

)
·

(∑
A∈A

(1− uAX)
∏
A∈A

uAX+
∑

x∈R(X)

∑
A∈A

bA(x)(1− uAX)
∏
A′ 6=A

uA
′

−1

Next, we can substitute
∑
x∈R(X) bAX(x) by 1 − uAX . Now, one can split the sums A ∈ A into

|A| −
∑
A∈A u

A
X , yielding the numerator as described in Case 1; the denominator can be obtained by

appropriate re-ordering.

5.2.5 Consensus & Compromise Fusion

Consensus & compromise fusion (CCF) is conceptually designed to first achieve consensus, conserving
the agreed weight of all inputs, and then compute a weighted compromise for the remaining belief mass
based on the relative uncertainty and the corresponding base rates relative to intersecting sets. Because
this second step generally results in a total distribution greater than 1, a normalization factor η is used,
which is multiplied with the compromise belief to compute the final fused result. Let again A be a finite
set of actors and let ωAX = (bAX , u

A
X ,aX) denote the multinomial opinion held by A ∈ A over X. Then,

CC fusion ωbA
X is defined as the result of the following three computation phases: 1) consensus phase,

2) compromise phase, 3) normalization phase.
Step 1: Consensus Phase

In the first phase, the consensus belief bcons
X (x) is computed as a minimum common belief per x. The

residual beliefs bresA
X (x) of each actor are the differences between their belief and the consensus belief.

The total consensus bcons
X is the sum of all consensus beliefs.
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bcons
X (x) = min

A∈A
bAX(x)

bresA
X (x) = bAX(x)− bcons

X (x), for each A ∈ A

bcons
X =

∑
x∈R(X)

bcons
X (x)

Step 2: Compromise Phase
The compromise belief bcomp

X (x) in a frame x is computed by adding four components: 1) the residue
belief, weighted by all other actors’ uncertainty, 2) the common belief in frame sets where the intersection
is x, 3) the common belief in sets where the union is x, but whose intersection is non-empty, and 4) the
common belief in the sets where the union is x and the intersection is empty. This can be formulated as
follows:

bcomp
X (x) =

∑
A∈A

bresA
X (x) ·

∏
A′∈A,A′ 6=A

uA
′

X

+
∑

y1,...,y|A|
s.t. ∩iyi=x

|A|∏
i=1

bresAi
X (yi) · aX(yi | yj , j 6= i)

+
∑

y1,...,y|A|
s.t. ∪iyi=x
and ∩iyi 6=∅

1−
|A|∏
i=1

aX(yi | yj , j 6= i)

 · |A|∏
i=1

bresAi
X (yi)



+
∑

y1,...,y|A|
s.t. ∪iyi=x
and ∩iyi=∅

|A|∏
i=1

bresAi
X (yi),

where x ∈ P(X)

The second, third and forth terms of this equation taken together basically iterate over a tabulation
of the different valid combinations for yi ∈ P(X), and depending on the constraints defined under the
sum, one of the three computations is made. Since set operations are associative and commutative, the
ordering of A implied by this equation is irrelevant, since all orderings are included in the tabulation.
This is analogous to the way this operator was initially defined by Jøsang [144].

Additionally, in the second phase the preliminary uncertainty mass upre
X is computed as the product

of all uncertainties. The intuition is that this represents the common uncertainty all actors agree on.
The value bcomp

X is computed as sum of the compromise beliefs over P(X):

upre
X =

∏
A∈A

uAX

bcomp
X =

∑
x∈P(X)

bcomp
X (x)

These values are used in the next phase.
Step 3: Normalization Phase

Since mostly bcons
X + bcomp

X + upre
X < 1, a normalization factor η of bcomp

X has to be applied. We compute
η as follows.

η =
1− bcons

X − upre
X

bcomp
X

The belief on the entire domain X is then added to the uncertainty. The intuition behind this is that
a belief in X is the belief that anything will happen. Referring back to the tournament example from
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Hankin, the belief that X will win is the belief that a winner exists, without distinguishing between the
singleton values in this set, which is equivalent to non-informative belief, i.e., uncertainty.

ubA
X = upre

X + ηbcomp
X (X).

After this transfer, we set bcomp
X (X) = 0.

Now, the belief can be combined over all x ∈ R(X) after applying the normalization factor.

bbA
X (x) = bcons

X (x) + ηbcomp
X (x).

Definition 11 (CC-Fusion of multiple sources). Given a finite set of actors A and their multinomial
opinions ωAX = (bAX , u

A
X ,aX) over X for A ∈ A. We define the resulting CC-fused opinion as a result of

the previous three-step computation as ωbA
X = (bbA

X , ubA
X ,aX).

As this fusion operation is defined for subjective logic only, we do not prove it’s equivalence to other
operations in other models. However, we note that this operation always generates valid opinions, and
that our definition reduces to the original definition for the case that |A| = 2.

Remark 4 (Multi-source CCF always generates valid opinions). This holds if the output of multi-source
CCF produces valid beliefs and uncertainties (in the range of [0, 1]), and the additive property holds,
i.e.,

∑
x∈P(X) bX(x) = 1. The first property holds, since the definition consists only of additions and

multiplications of non-negative numbers, except for the definition bresA
X (x) = bAX(x)− bconsX (x), which is

at least zero, since the latter term is the minimum of all the beliefs in x. The second property holds due
to the choice of η, and because bAX(∅) = 0 for well-defined belief functions:

1
!
= ubA

X +
∑

x∈R(X)

bbA
X

= upreX + ηbcomp
X (X) +

∑
x∈R(X)

(bcons
X (x) + ηbcomp

X (x))

= upreX + bconsX + ηbcomp
X

= upreX + bconsX + 1− bconsX − upreX = 1

Remark 5 (Multi-source CCF is a generalization of the CC fusion operator). With A = {A,B}, the
steps resolve to these statements are as follows:

bcons
X (x) = min(bAX(x),bBX(x))

bresA
X (x) = bAX(x)− bcons

X (x)

bresB
X (x) = bBX(x)− bcons

X (x)

bconsX =
∑

x∈R(X)

bcons
X (x)

bcomp
X (x) = bresA

X (x)uBX + bresB
X (x)uAX

+
∑
y1,y2

s.t. y1∩y2=x

bresA
X (y1)aX(y1|y2)aX(y2|y1)

+
∑
y1,y2

s.t. y1∪y2=x
and y1∩y2 6=∅

(1− aX(y1|y2)aX(y2|y1))bresA
X (y1)bresB

X (y2)

+
∑
y1,y2

s.t. y1∪y2=x
and y1∩y2 6=∅

bresA
X (y1)bresB

X (y2)
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upreX = uAXu
B
X

bcomp
X =

∑
x∈P(X)

bcomp
X (x)

η =
1− bconsX − upreX

bcomp
X

ubA
X = upreX + ηbcomp

X (X)

and finally, setting bcomp(X) = 0.
Except for differences in notation, this is the same as the definitions provided in [144, Ch. 12].

5.2.6 Example

Table 5.1: Extending the examples from [160]. The numbers presented here are rounded. The final row
of the table presents the projection of each operation to the probabilistic space.

Inputs Fusion
Parameters A1 A2 A3 aCBF eCBF BCF ABF WBF CCF
b(x) 0.10 0.40 0.70 0.651 0.442 0.738 0.509 0.562 0.629
b(x̄) 0.30 0.20 0.10 0.209 0 0.184 0.164 0.146 0.182
u 0.60 0.40 0.20 0.140 0.558 0.078 0.327 0.292 0.189
a(x) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

P (x) 0.40 0.60 0.80 0.721 0.721 0.777 0.673 0.708 0.723

In this section, we extend the table from Jøsang et al. [160] with results for the fusion operations
we have defined. This example considers a situation where three sources, A = {A1, A2, A3}, provide
opinions over the same binary domain X = {x, x̄}. These opinions can be merged using the operators we
discussed in this paper: the numerical results are shown in Table 5.1. We briefly discuss the functionality
of each new operation (highlighted in bold in the table), and refer to the work by Jøsang for a detailed
discussion of aCBF (referred to as CBF in their work) and ABF. The mathematical properties of all
operators are discussed in the book that proposes them [144, Ch. 12], and we do not repeat such a
discussion here.

• aleatory Cumulative Belief Fusion (aCBF) is suitable for situations where opinions represent
independent sources of evidence. This operation is thus suitable for situations where different
information sources with the same result imply there is more evidence for this fact. However, the
assumption of independence means that this is not suitable for cases where actors are attempting
to agree on a decision or achieve consensus.

• epistemic Cumulative Belief Fusion (eCBF) is the uncertainty-maximized version of aCBF.
As previously mentioned, epistemic here refers to the fact that the opinions involved are used for
representing knowledge, rather than documenting specific observations. Epistemic opinions are
always uncertainty maximized: they represent exactly the available information about X beyond
the base rate a, and no more. This operation is useful for artificial reasoning about abstract events,
which are not tied to a specific instance.

• Belief Constraint Fusion (BCF) is the generalization of Dempster’s rule of combination that
considers distinct base rates. The interpretation of BCF has been the subject of many works over
the years [4, 144, 148], most importantly noting that conflict is essentially discarded.

• Averaging Belief Fusion (ABF) computes the raw average of evidence values from each actor.
This operation is intended for cases where opinions are based on dependent evidence, e.g., different
actors observe the same things but may establish different opinions. To fuse these, ABF can be
used if all actors are considered equal. The most common example of ABF is a court in which a
decision is reached by jury: each actor’s opinion counts equally towards the final decision.
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• Weighted Belief Fusion (WBF) is the evidence-weighted combination of belief from different
sources. Similar to averaging belief fusion, it is useful where dependence between these sources is
assumed. However, it introduces additional weighting by looking at the confidence of all sources,
increasing the significance of sources that possess high certainty. This automatic weighting is
useful for the combination of evidence from a large variety of uncertain sources which output high
certainty in very specific scenarios. In such cases, ABF issues high uncertainty, while WBF outputs
what is intuitively a consensus between experts: each expert individually choose their confidence,
and thus their weight in the decision.

• Consensus & Compromise Fusion (CCF) is specifically designed to create vague belief from
conflicting belief on singleton values. More precisely, generating a vague belief refers to the deriva-
tion of a belief of a composite value x1∩x2 if two opinions have high belief in x1 and x2 respectively.
This is useful when different experts generate opinions identifying different options, such as when
doctors with different expertise suggest potential causes in a diagnostic process. The fused opinion
reflects the opinion of all experts, and illustrates the group as a whole is certain about a certain
set of potential causes, without expressing relative likelihood.

5.2.7 Conclusion

As part of this thesis, we contribute multi-source fusion operations as non-trivial extensions of several
existing fusion operators: the belief constraint fusion, the weighted belief fusion, and the consensus &
compromise fusion. Since the native operators’ definitions are non-associative, a definition is required
to enable fusion of information from multiple sources. We also discuss the intuition behind the fusion
process and the corresponding interpretation of the fusion result. Finally, we have proven that WBF
corresponds to the confidence-weighted averaging of evidence in the Dirichlet multinomial model. These
contributions will be applied by Maat as part of its fusion process; we provide all these extensions in
order to be able to do a comparison of the different operations.

Finally, we would like to comment that both Dempster-Shafer theory [4, 95] and Subjective Logic [113]
have been the subject of controversy over the years. In our work, we rely on the finalized description
of subjective logic [144], which contains a clear map between subjective opinions and Dirichlet PDFs,
resolving the main issue raised by Dezert et al. [113] (namely that different mappings have been proposed,
and it is unclear which is the valid one). Nevertheless, the criticisms and alternative proposals made
by these and other authors should be considered seriously. To our best understanding, the concerns
raised have been resolved sufficiently, which is also evidenced by the continued study and extension of
subjective logic at major publication platforms in the field [160]. We argue that our proposed derivations
of multi-source fusion operations is a useful contribution to the field.

5.3 Trust

Computational trust is a multi-faceted topic that has a significant history both with respect to subjective
logic and the existing work discussed in Chapter 2. In this section, we briefly discuss how Maat treats trust
internally, by discussing these separate aspects, followed by a brief discussion of reputation. However,
we point out that trust in ad-hoc networks is typically based only on previous interactions, and therefore
existing mechanisms from the literature require well-performing detection mechanisms. For this reason,
this thesis primarily focuses on fusion and trust over time (provided by schemes such as the exponential
weighted average (EWA), see Section 5.4.2). This trust section therefore also describes how existing
trust mechanisms fit into Maat.

5.3.1 Trust in Subjective Logic

Previous work [144, Ch. 14, Ch. 15] discusses the concept of computational trust in subjective logic.
This includes a discussion of trust domains, which are the equivalent of the domain of opinions in the
opinion types discussed earlier in this chapter, as well as an extensive discussion of the philosophical
underpinnings and types of trust that exist. The particular distinction that is important here is the
distinction between referral trust and functional trust. Referral trust describes how A’s opinion about
B describes how likely B is to provide accurate recommendations, while the functional trust of A in
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B describes how likely it is that B will provide accurate predictions, according to A. The book on
subjective logic [144] describes this with an example of car mechanic skill: if Bob states Eric is a good
mechanic, this represents Bob’s functional trust in Eric, while if Alice has referral trust in Bob, she might
derive functional trust in Eric, even though she was not previously aware of Eric. Transferring this to
Maat, we use referral trust to describe the decision node’s confidence in detectors and a node-centric
detector’s trust in other vehicles, and we use functional trust between detectors and the data or entities
they evaluate, as well as for entities that provide trust about other objects. Because in our setup, the
entities are vehicles rather than humans, we assume that for opinions exchanged between vehicles about
each other, the functional and referral trust can be conflated into a single value. Future work could
theoretically distinguish these two trust types, but we expect the added value to be minimal, especially
due to the ephemeral nature of these networks, as previously discussed by Raya [40].

As already mentioned, referral trust is used to represent recommendations. To resolve these rec-
ommendations to a derived functional trust (i.e., an opinion from Alice to Eric in the example above),
subjective logic provides a trust transitivity operator. This operator is referred to as trust-discounting
operator, because it basically takes the recommendation provided by Bob and scales it, depending on the
existing referral trust in Bob. Mathematically, this means projecting the binomial opinion that describes
trust in Bob, and then multiplying the result with the belief function; the uncertainty is then defined
through the additive property, while the base rate remains unchanged. This operator is defined as [144,
Def. 14.6, Def. 14.7]:

ω
[A;B]
X :



b
[A;B]
X (x) = PA

BbBX(x),

u
[A;B]
X = 1−PA

B

∑
x∈R(X)

bBX(x),

a
[A;B]
X (x) = aBX(x),

This operator can be applied multiple times, if a path with multiple referral trust steps exists, until
one arrives at functional trust. In other words, this operator can be applied repeatedly from left to
right in a directed path in order to produce a single opinion representing the trust in intermediate
steps. One important constraint required for this to work is that paths should be finite and contain
no cycles. The issue of trust cycles is not addressed by subjective logic specifically; however, a broad
variety of trust management and computational trust schemes exist that incorporate some kind of cycle
removal algorithm. For some examples, we refer the interested reader to an overview by Victor et al. [84].
Within our prototype, we restricted the path length in our graph, essentially only allowing functional
trust recommendations. This simplification was made primarily to simplify implementation – a straight-
forward solution to integrate all trust edges between entities would be to first query the trustworthiness
of those entities evaluating the data of interest, and then use the cached edges in the fusion process.

5.3.2 Node-centric Detectors

Many node-centric detectors discussed in Chapter 2 and in our survey [170] can be adapted to operate
in a subjective logic setting, similar to the way data-centric detectors can be adapted, as discussed in
Chapter 6. Those adaptations work for the decisions made by detectors within a single Maat instance
(i.e., internal to the vehicle). However, many node-centric detectors also require communication with
other instances in order to work correctly. This is especially important for mechanisms that rely on
node reputation (such as LEAVE and OREN), as well as mechanisms that perform any kind of event
validation. In particular, in these two classes, messages are generated by a sending vehicle about the
reliability of another vehicle, or about data received from another vehicle. These messages are intuitively
similar to the opinions we have discussed so far; indeed, subjective logic was designed to represent such
information exchange.

In our work, we have focused primarily on data-centric detection, as this is a necessary component
in order to generate either of these message types. As previously mentioned and explained in detail in
Section 4.3, we foresee that Maat’s internal graph structure could be used for the direct information
exchange between vehicles. However, it is also possible to integrate existing node-centric detection
mechanisms, at least on a conceptual level. To be able to do this, all that is required is an implementation
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of these mechanisms using subjective logic. This is usually easy, because most schemes use a probabilistic
trust value, which can be converted into a dogmatic opinion with the corresponding belief/disbelief.
In our model, we assume that there is only one way to issue opinions about other vehicles (i.e., the
trust graph is not a multi-graph). This limits us to exactly one node-centric detector that exchanges
information with other vehicles (i.e., node-centric trust mechanisms). This makes intuitive sense; if
vehicles transmit multiple opinions about each other, it is very hard to decide which of these is valid.
This also corresponds to how decision making works: in the end, one must either trust a vehicle or not.

5.4 Subjective Logic Extensions

This section describes additional extensions we made to subjective logic, which are primarily designed
to evaluate Maat. This includes two operations that represent extreme cases in the decision logic; the
MIN and MAJ operations, representing the minimum opinion (well-defined only for a binomial opinion)
and the majority decision, which sides with the majority decision of its inputs (if any). Definitions can
be found in Equation 5.7 and Algorithm 1 respectively. Essentially these operations are representative
of naive fusion operations, as partially discussed in previous work. The purpose of these operations is
to serve as a baseline against which to compare the other operators, as well as to demonstrate that
dedicated fusion operators for subjective logic indeed perform better in practical situations.

In addition, we also define the computation of an exponential weighted average (EWA) for binomial
opinions. This is useful when combining opinions from the same source at different time steps (i.e.,
different versions of Maat). Such combinations have been suggested as a means to “even out” classification
errors made by individual detectors. For our evaluation of such mechanisms, a meaningful definition of
the EWA for opinions was required; we provide the corresponding definitions here.

5.4.1 Baseline Operations

The MIN operator represents the most sceptical approach: each detector must explicitly accept the
message, as defined in Equation 5.7. This operator is similar to fusion methods used in some related
work in the past: for example, Stübing et al. [82] take this approach for their plausibility checks. Similarly,
the designers of VEBAS [35] specify that all checks potentially detecting attacks must pass. Although
this sounds like a reasonable approach, it only applies when the checks have a negligible false positive
rate (i.e., falsely classify a message as malicious). It has been shown by these works, as well as other
authors, that even seemingly obvious checks as the acceptance range threshold, often do not achieve
negligible false positive rates [141]. Therefore, our expectation is that this operator will have a high false
positive rate, which will lead to a low precision overall.

ω
MIN(A)
X = min

Ai∈A
(E(ωAiX )) (5.7)

where E(ωAX) = bAX + uAX · aAX (5.8)

Another naive fusion operator is analogous to a vote: assume the majority of detectors provide a
correct decision, and use this output. We implement this behavior through the MAJ operator, which
computes the outcome of each input opinion through projection, and then outputs full belief or disbelief
(i.e., a dogmatic opinion) to align with this outcome. In cases where there is no majority in either direc-
tion, it then seems natural to decide the outcome as uncertain (i.e., (0, 0, 1, 0.5)). This is algorithmically
defined in Algorithm 1. Our expectation is that the MAJ operator will work very well for situations
where detectors unanimously agree on the maliciousness of the message. However, detectors can be
expected to be designed to detect known attacks, and it seems likely that MAJ will be vulnerable to
messages that look partially legitimate.

5.4.2 Exponential Weighted Average

Trust Transitivity In addition to the different fusion operators, subjective logic offers trust tran-
sitivity to model trust relationships between entities, one of the purposes for which it was originally
designed [144]. In our proposal, we use transitive trust to model the reliability of individual detectors
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Algorithm 1: Procedure to compute majority opinion. Note that E(ω,xi) refers to the projected
probability of xi given the opinion ω.

input : A list of opinions ωAiX
output: A fused opinion that represents the majority decision

v ← 0;
for i = 0 to |X| do

ti ← 0;
end
for i = 0 to |A| do

find xi s.t. E (ωAiX ,xi) > E (ωAiX ,xj) where i 6= j;
if no such xi then

v ← v + 1;
else

ti ← ti + 1;
end

end
if ∃!ti s.t. ∀j : j 6= i =⇒ tj < ti then

return dogmatic opinion for xi;
else

return vacuous opinion;
end

in our system. Because detectors are designed to detect specific attacks (analogous to signature-based
detection in IDS), and there is a wide variety of attacks, it is likely that many detectors coexist in
a deployed system; hence, their reliable fusion is of the utmost importance. It is possible to directly
apply fusion operations to detector outputs. However, this leads to the domination of the output by
few, highly confident detectors: for example, a plausibility check with a hard threshold would always
output a dogmatic opinion. Because fusion with a dogmatic opinion always results in a dogmatic output
(since dogmatic implies infinite evidence), our earlier work [141] adapts existing mechanisms with hard
thresholds to reduce the impact of this issue. We discuss these adaptations in more detail in Chapter 6,
as they are of independent interest.

Here we propose an alternative to avoid dogmatic opinions all together: modeling the system confi-
dence in a detector through an opinion, which is then combined with the detectors’ output through trust
transitivity. After this weighting process, the outputs of each detector are combined through fusion,
as discussed in the previous section. The added advantage of this approach is that the system can be
configured to temporarily disable certain detectors, e.g., in case they are known to perform poorly for
specific scenarios. This process allows us to apply a dynamic weighting, which significantly weakens
the assumptions that need to be made about these detectors, and thus it enables the inclusion of more
attack-specific detection mechanisms.

An additional commonly used mechanism to reduce the impact of errors is the use of an exponential
weighted averaging (EWA) [35, 88]. The idea is that classification errors tend to be random, and thus
recent message history allows the correction of such errors by including the trust of those previous
messages. Despite the risk of reputation or intermittent attacks, where the attacker only misbehaves for
some messages, authors have suggested that this process is viable for reputation establishment. EWA is
typically defined as follows:

Tt = (1− α)Tt−1 + αTnew

Where Tnew is the new detector output, Tt is the trust at time t, and α is a weight parameter that
assigns importance to newer values (α = 1 discards old values completely). The choice of α determines
the balance between removing classification errors (both false positives and false negatives) on the one
hand, and on the other hand preventing attackers from impacting the system through a combination of
malicious and benign messages. An analogous definition can be given in terms of the expectation (i.e.,
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Figure 5.2: A world model with a single data item.

projected probability) of an opinion:

E(ωA
t ) = (1− α) · E(ωA

t−1) + α · E(ωAnew)

Note that this definition implies there are multiple opinion choices possible for ωA
t , because the projection

from opinion to probability value fundamentally discards information. In our framework, we use EWA
for each detector to incorporate past opinions on the message history before fusing the EWA adapted
results. Thus, a choice needs to be made which value is chosen to represent the output in opinion space
to fuse the results later on. Since our argument for the use of EWA is based on the assumption that
errors in detector output are random, we choose the uncertainty-maximized opinion, which is the opinion
with the correct expectation that has the most uncertainty. The result is used as input for fusion.

5.5 Fusion and Trust in Maat

Our system, Maat, takes the previously discussed components and builds a misbehavior detection frame-
work that can be deployed with a dynamic set of detectors. Rather than simply combining fixed detection
mechanisms, as proposed in previous work [35, 82], our approach is designed for flexibility in the combi-
nation of detectors, and the trust placed in them. The design of Maat is inspired by the previous work
of Dietzel et al. [115], who also propose a graph-based representation of received data. As discussed
previously, the world model consists of four vertex types: data items to represent received messages,
entity vertices to represent senders, detector vertices to represent detectors, and a root node that rep-
resents the system’s trust in detectors. The edges between these vertices represent expressions of trust
through subjective logic opinions. An example of such a graph can be found in Fig. 5.2, where the data
item D represents beacons received from the single sender, and the five detectors are those used in our
evaluation. With this single leaf, every path shown in the figure is a path to the data item, and therefore
used to evaluate the trustworthiness of the message. By default, no trust is placed in a sender (such as
V in the figure), and therefore its opinion about its own message is not considered as input for trust.

To compute the trust in the current value of D, several factors are considered. First, the detectors
execute their detection process independently, and produce opinions on the data as discussed in Chapter
6. When data in D is queried through Maat’s API, the fusion process depicted in Figure 5.3 is applied.
This figure shows all the steps applied by Maat to classify the data as either trustworthy or not, assuming
the application only wants trustworthy data. First, a path search is done to find all existing output from
the decision node, Maat, in Figure 5.2 to the queried data. This results in a list of paths between Maat,
through detectors and possibly other entities, always ending in the data item from the query.

For evaluation, Maat can perform its evaluations either with or without an exponential weighted
averaging (EWA) applied to the detection results. If the EWA is applied, then for each edge between
detectors and data, the history of this edge is retrieved. This history contains the previous detection
results for earlier messages that were linked to the same data item. These are then combined using the
EWA, as discussed in Section 5.4.2. If no EWA is applied, then the system moves to trust transitivity
with only the most recent opinions expressed by each detector.

Regardless of whether an EWA is applied, after this step, we still have a list of paths that needs to
be reduced to a single decision. In the trust transitivity step, the fusionability parameter comes into
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Figure 5.3: Maat’s fusion process.

play; this weighs the influence of each detector. It is technically possible to choose different fusionability
values for each detector (e.g., by applying some machine learning algorithm) to achieve the best detection
results. Due to a lack of ground truth data, we chose the same fusionability for all detectors (i.e., all
detectors are trusted equally), which means that the final weight in the fusion is dependent on the fusion
operator. This results in a list of opinions between Maat and the data item D.

At this point, the actual fusion operation is applied; which operation is used can be configured in the
prototype implementation of Maat. In our experiments we use this functionality to compare the different
operations. Since the operations differ primarily in how the uncertainty is weighted in the fusion process,
this should also be kept in mind during detector design. The result of this process is a single opinion of
Maat on the data.

Finally, to decide on the trustworthiness of the queried data, the resulting opinion is projected. This
operation maps the data to an expectation, a probability value that quantifies how likely the data is
to be trustworthy (or not). If the expectation is over 0.5, Maat considers the data trustworthy and
outputs that the data as true. If the expectation is equal to or below 0.5, the data is considered to be
untrustworthy. Applications that can deal with the uncertainty expressed by subjective logic may also
retrieve the opinion, rather than this binary decision. However, for our evaluation we require a final
decision at some point: this decision approach appears to be the most reasonable.
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Chapter 6

Detectors

This chapter describes detectors developed as part of the thesis and their integration into Maat. This
includes both new detectors and re-implementations of existing ones. We also discuss a number of
ways in which subjective logic can provide added flexibility for the detection process, and how detectors
that are independent of subjective logic can still be integrated into our framework. We also provide
proof-of-concept evaluations in Section 6.2, which are early results that motivated the development of
Maat’s fusion process in Chapter 5. A detailed evaluation of detectors and fusion can be found in
Chapters 8 and 9. This chapter is based on several works that were published previously [139, 141, 172].

6.1 Detectors

This section introduces detectors implemented in Maat during this thesis, including both new detectors
and re-implementations of existing ones from the literature. As discussed previously, we did not find a
single detector throughout the literature for which source code was made public – we first focused on
developing a baseline. To this end, we also re-implemented promising mechanisms from the literature,
and designed alternatives where insufficient detail was provided to reproduce the work. We selected
mechanisms that can always provide an estimate of accuracy for every message, using different models to
validate the same data. The purpose of this is to show that the fusion discussed in the previous chapter
can be used to boost performance by exploiting the availability of additional information.

In the following, detectors are labeled as either existing or novel. Existing detectors are re-implemen-
tations, whose purpose is to stay as close to the original design as possible. Some of the novel detectors
are inspired by existing work, but they include modifications that make them more suitable for the
generation of subjective opinions. This topic is addressed in the next section.

6.1.1 Existing Detector: Acceptance Range Threshold (ART)

The acceptance range threshold (ART) [29] is based on the assumption that transmission range is (ap-
proximately) fixed for all vehicles. Using this assumption, a detector can be derived that validates
position information by checking whether the claimed position is close enough to the receiver. This also
assumes that the receiver position is known and that errors in any position (e.g., due to the GPS of
the sender or the receiver) are negligible. In essence, a reception area can be determined, which is the
area from which received messages could have originated. If a position claim is received that is outside
this area, it is an indication that this claim is false. If the position is in the area, the ART accepts the
claimed position. An example can be found in Figure 6.1, where the receiver (green) and its reception
area are shown. The attacker (red) claims to be at a distant position (grey), but this location is outside
the receiver’s reception range1.

The ART can also be described as putting a simple threshold θ on the distance from which a received
claim position is accepted. In this view, a claimed position at distance d is accepted if d ≤ θ. Note
that an attack for any position within the reception range of a receiver cannot be detected by that
receiver using the ART. The greater weakness of this detector is the assumption of a fixed transmission

1This detection could either imply that the attacker is attacking another vehicle near the grey position, or it may be
an attempt to attack the green vehicle’s routing algorithm to trick it to forward messages through the attacker.
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Figure 6.1: An example of the ART detector. Here, the green receiver vehicle assumes the indicated
reception range, while the red attacker vehicle attempts to falsely claim the grey position.

range: in the real world, transmission ranges are limited by obstacles and various propagation effects.
This can cause receptions outside of the predicted communication range for beacons according to current
standards (which is assumed to be approximately 300 meters). These observations suggest that modeling
the ART through subjective logic opinions provides a more adequate solution for fusion. We discuss these
opinions in Section 6.2.1.

6.1.2 Existing Detector: Pro-active Neighbor Exchange

Because the ART cannot detect all attacks, its authors also proposed the pro-active neighbor exchange
mechanism [29]. As the name suggests, the detector relies on the pro-active exchange of neighbor table
information between all vehicles. The neighbor table contains the last received position for every nearby
vehicle. The authors propose that this information can be compressed to a short identifier (e.g., a hash
of the pseudonym certificate) for each neighbor.Using the position and neighbor lists for each neighbor,
an attack can be detected by testing whether the new message is consistent with these neighbor tables.
This is done by checking whether the potential attacker is present in each neighbor, as implied by the
difference between the position of the neighbor and the claimed position. Similarly, it is checked whether
the attacker appears in any neighbor tables that it should not appear in. Essentially, this is thus an
indirect ART; the detecting vehicle only uses information from other vehicles.

An example of this detector is given in Figure 6.2. Here, the green detecting vehicle uses the positions
of the blue and black vehicles, which were received at some previous time, to estimate their respective
reception ranges. The position claim from the red attacker vehicle, marked in grey in the Figure, is
now compared with these ranges. In this example, the attacker should appear as a neighbor in all three
neighbor tables of the black vehicles, while not appearing in the neighbor table of the blue vehicle.
However, the red vehicle is only in one of the three black transmission ranges, and thus will only appear
in one of the three black position tables. Thus suggests that the grey position is false.

Figure 6.2: An example of the pro-active neighbor exchange. Here, the green vehicle uses a prediction
of each neighbor’s reception range to determine whether the red attacker vehicle should appear in the
neighbor table of that neighbor. The attacker claims to be at the grey position.
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Figure 6.3: An example of the SAW detector. The green vehicle has not yet seen the red attacker at
time t0, but in the next beacon it receives from the attacker at time t1, it claims a position directly in
front of it.

Because mechanism relies on additional message contents, it is not standards-compliant, and the
greatly increased message size can cause more message loss, while also reducing the bandwidth available
for other applications. However, it enables the cooperative detection of attacks in the area near the
detecting vehicle, where the ART is unable to detect attacks. For this reason, we chose the pro-active
neighbor exchange as the complementary detector for the ART, with which we derived our first results
for detector fusion. We discuss opinion generation for this detector in Section 6.2.2. The results of our
first fusion experiments are outlined in Section 6.2.

The cooperative nature of this detector makes it susceptible to exploitation by more advanced attack-
ers. For example, an attacker can use neighbor tables to falsely accuse various vehicles of misbehavior.
Similarly, a successful false position claim on a detecting vehicle (i.e., a single false negative) with a
well-chosen neighbor table can cause many errors (both false positives and false negatives) later on.
This is because the detecting vehicle trusts all the accepted positions and corresponding neighbor tables.
Finally, and most critically, the detector is highly susceptible to false positives, as also pointed out by
the original authors [30]. The main causes of this are the fact that neighbor tables are designed to keep
neighbors listed for some time, and the fact that timing is not accounted for. Because the detector
assumes that all neighbor tables used in detection are up-to-date and recent, this leads to many errors
in high-speed scenarios. For these reasons, in addition to the overhead caused, we replaced this detector
with alternatives during the evaluation of Maat itself.

6.1.3 Existing Detector: Sudden Appearance Warning (SAW)

The sudden appearance warning (SAW) [30] is a detector that is based on the fact that vehicles do
not suddenly appear out of nowhere. Instead, when approaching another vehicle, beacons are typically
received at a regular interval. This means that position claims from new neighbors that are very close by
are inherently suspicious. This plausibility check was considered particularly useful in earlier work [30],
where the primary goal was to warn drivers of suspicious activity. The check potentially detects an
important class of attack, which aims to trigger an immediate response from a vehicle by claiming a
position directly in front of it. If this behavior is performed from the first contact, the SAW is one of
the few mechanisms capable of detecting such an attack. This is illustrated in Figure 6.3.

The SAW detector can also be viewed as a threshold detector: if a newly appearing vehicle is closer
than a threshold distance θ, then it is untrustworthy. This threshold depends largely on the communi-
cation characteristics of the network, in particular on how likely it is that messages between the sender
and the detecting vehicle may be lost. This also points to a potential way for an attacker to exploit this
detector: either through intelligent jamming or by simply jamming the entire channel for some time, the
SAW can trigger on legitimate vehicles. The detector is also not suitable for situations where vehicles
may actually appear suddenly, e.g., from a parking garage or parking spaces next to the road. To some
extent, a poorly configured threshold may also lead to detection surrounding crossings, since buildings
are likely to block signals until the threshold is violated. However, the SAW advantages for weaker
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attacker models, where the attacker does not know whether its target is already aware of its presence.
For example, an attacker may attempt to avoid detection by the ART by always claiming positions close
to its target; the SAW can detect such an attack if the attacker assumes the target is already aware of
its presence. Because it detects very specific attacks that cannot be detected by other detectors, we have
integrated this detector into Maat. Due to the similarities with ART, we set the SAW’s subjective logic
opinions in the same way as the ART, except that values over the threshold are considered trustworthy
and below the thresholds are considered untrustworthy. The expression for this is thus the one given in
Section 6.2.1, but with the ≥ and < symbols in the conditions swapped.

6.1.4 Existing Detector: Overlapping Position Detector (OPD)

Maat’s recent releases also include a re-implementation of the data-centric part of the detection proposed
by Bißmeyer et al. [45], which is based on the fact that two vehicles cannot occupy the same space. This
detector, the overlapping position detector (OPD), detects false positions by checking for overlapping
position claims using simple geometry. In order to actually detect most attacks, the authors proposed
to compute additional rectangles, representing possible vehicle positions in the presence of GPS errors,
based on the (claimed) speed of the vehicle. Since those rectangles are outside the actual position of the
vehicle, an absolute statement (i.e., vehicles may never overlap) is insufficient, and some degree of trust
is needed. In their work, Bißmeyer et al. used an additional trust mechanism on top of this proposal. In
our implementation, we are interested in the detector itself, and thus we attempted to reproduce their
work. To ensure that we specifically validate the position and make attacks more easily attributable, we
compute the speed of each receiver from separate position claims. Other than that, our implementation
aims to closely follow Bißmeyer’s work; we also assume a 2D surface for vehicles (i.e., height differences
are not considered) and compute the overlap result when a message arrives. A simplified example of a
detection can be found in Figure 6.4.

Figure 6.4: An example of the OPD detector, where the innermost rectangles of the grey and green
vehicle overlap. Since the innermost rectangles of vehicles correspond to the vehicle shape, we only show
the vehicles in this figure. In this situation, the detecting vehicle is the only other vehicle, and we assume
that this vehicle trusts itself, thereby classifying the claimed position as malicious.

A naive implementation of this detector requires many different parameters. Following Bißmeyer et al
[45], we choose a maximum rectangle width (2.5 meters), as well as the same length and width for all
vehicles (5 and 2 meters, respectively). In reality, the vehicle dimensions are stored in certificates, and
thus the information necessary for the scheme is available2. Further factors that are part of the scheme
are the amount of rectangles used in the detection process (3 rectangles), a factor α = 1.0 that modifies
vehicle length, and a factor that is used to determine how strongly speed influences the length of each
rectangle (ds = 1

1.25 ) The values mentioned here are in line with Bißmeyer et al.’s choices. The parameter
γ, which is an exponential parameter used to manipulate the certainty of the final detection result, is set
to 0.5.

Because the output produced by Bißmeyer et al. is probabilistic in nature, it is natural to convert
their output directly to an opinion. From their work it is clear that the message is considered malicious
if an overlap is detected, but the lack of an overlap does not imply that the message should be accepted.
Therefore, it is suggested that the opinion should be defined as follows:

ωOPD = (0,
1

(r + 1)γ
, 1− 1

(r + 1)γ
) (6.1)

Here, r is the smallest pair of overlapping rectangles, which are numbered from the innermost (r =
0, no overlap allowed) to the maximum (r = 2, some overlap possible). This reflects the relative
unlikeliness that rectangles of the size specified by the above parameters actually interact. Similar
to Bißmeyer et al. [45], we have not yet provided a thorough analysis of the relative behavior of all these

2It is possible that detection may not behave fairly if vehicles have different sizes, though.
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parameters, but rather we conserve their values. Initial experiments [152], attempting to reproduce the
positive results of these authors in our scenario against our attacks, suggest that this detector is not
useful in detecting the majority of attacks implemented in our system. This applies even when the
decision threshold for the opinion is modified (i.e., allowing full uncertainty to count as an accepted
message). These results suggest that there is some bias in either the choice of attack and simulation
scenario, or in the experimental design of Bißmeyer et al. [45] and the dataset that they use. Since none
of these components used by Bißmeyer et al. are publicly available, we found that it was not possible to
reproduce their results. Instead, we find that the detector performance is so poor that essentially none
of the attacks we implement can be detected at all. Since it does not make sense to include a detector in
fusion of which it is clear that no attacks are ever detected, we decided to exclude this mechanism from
our evaluations based on these results.

6.1.5 Novel Detector: Distance Moved Verifier (DMV)

The distance moved verifier (DMV) is a simple detector, inspired by the minimum distance moved
(MDM) [30], but designed to meet the requirements for immediate decision making. As the name implies,
this detector validates whether the target has moved a threshold distance θ between two position claims.
The MDM detector from Leinmüller et al. has similar properties; however, this detector is designed to
wait for a certain amount of time before a decision is made (within which potentially many beacons
can arrive). The DMV is a simpler detector that is aimed at immediate decision making as is desired
within Maat. The DMV detects attacks and faults that cause lead an attacker to transmit the same
position repeatedly, mirroring the purpose of the MDM. Although the primary purpose of both is to
detect road-side attackers, an attack as in Figure 6.5 can also be detected. Note that the MDM would
not have been sufficient to detect this example attack at t1. The attacker would be aware of the threshold
the green vehicle would use to operate the MDM, and thus the red vehicle could simply claim a valid
position at some later time t2 to avoid detection. This is not possible for the DMV.

Time t0 Time t1

Figure 6.5: An example of the DMV detector. In this example, the green and red vehicles move with
the same speed, but the red vehicle claims the same position at both t0 and t1 (marked in grey in the
latter), while in reality it has moved (shown in red).

A weakness of the DMV is that it is more susceptible to errors caused by normal traffic behavior. For
example, vehicles in a traffic jam can trigger the DMV because they are not moving. Similarly, vehicles
stopped for a traffic light can also trigger the DMV to distrust this vehicle. This behavior could be
compensated for by changing this detector’s fusionability in these specific traffic situations, which can
be recognized easily. Independent of that, in Maat, the idea is that fusion can successfully merge the
DMV with other results in such a way that this has a very low impact. Given the distance between two
beacons d and a threshold θ, we configure the opinion as follows:

ωDMV =

{
(0.5, 0, 0.5), if d ≥ θ
(0, 0.5, 0.5) if d < θ

(6.2)

6.1.6 Novel Detector: Simple Speed Check (SSC)

The simple speed check (SSC) is a detector inspired by the Kalman filter proposal from Stübing et al. [108].
Recall that a Kalman filter is a linear state estimation algorithm that is often used to track objects over
time. This filter represents the state of each observed object as a vector of position and speed infor-
mation, and essentially applies Bayes’ rule to update the predictions and its error over time. If the
object moves linearly, then the error converges. Stübing et al. proposed that the Kalman filter could be
combined with some plausibility checks to validate new beacon messages. In this case, the prediction
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of the Kalman filter is used to determine the trustworthiness of the new message3. If the message is
plausible, the filter update process is applied; otherwise, the message is discarded.

The idea behind the SSC is to reduce the complexity of the Kalman filter; the required parameter
choices (e.g., initial states and estimates of measurement and movement errors) could not be made based
on Stübing et al.’s publications. As with the DMV, our implementation ensures that immediate decisions
can be made, rather than waiting for a number of messages to pass before evaluation. This allows a po-
tential misbehavior response algorithm to react in time, which is not possible when waiting for a number
of message receptions. In this case, the computational complexity is also reduced significantly. The SSC
computes an opinion based on three parameters; a base uncertainty (U = 0.1 in our implementation), a
deviation that is considered acceptable (OK = 0 in the simples case) and a deviation that is considered
completely untrustworthy (BAD = 10). The opinion is computed by comparing the extracted difference
∆v between two messages, resulting in the following equation:

ωSSC = (1− U − ∆v −OK

BAD−OK
,

∆v −OK

BAD−OK
, U) (6.3)

6.1.7 Novel Detector: Doppler Shift Detection

In a recent work [139], we identified that channel characteristics could be used to design novel misbehavior
detection schemes. We here describe one such mechanism, which is based on the Doppler shift in the
signal propagation path that occurs when the relative velocity of two objects changes. The Doppler shift
can be used to validate the velocity claims within a message, by comparing the relative velocity observed
in the signal to the relative velocity derived from the message and the own velocity. These velocities
should be approximately the same, but some deviation may exist; the velocity in the message must be
measured before transmission, and the time between these events may lead to minor differences. We use
an opinion to model this output, which can then be combined with other velocity-related detectors, such
as the mobility grade threshold [30].

We now introduce the concrete scheme tested by al-Momani et al. [139]. First, note that the observed
frequency of the signal in a single path is given by the following equation at the receiver side:

f =

(
1 +

∆v

c

)
f0 (6.4)

where c is the propagation speed in the medium (i.e., speed of light), f0 is the transmit frequency, which
is assumed to be known to both the sender and the receiver, and ∆v is the relative velocity between
receiver and sender. The receiver can easily compute this from the claimed velocity and its own velocity4:

∆v′ = vr − vs (6.5)

Note that velocity can be expressed as a combination of speed |v| and direction with respect to the
positive x-axis θ:

v = |v| θ◦ (6.6)

This means that each velocity vector has a component in the x, y, and z axis. Restricting to 2D
coordinates for flat roads, the relative velocity becomes:

∆v = (vrx + vry )− (vsx + vsy ) (6.7)

= |vr| cos(θr)− |vs| cos(θs) + |vr| sin(θr)− |vs| sin(θs)

Here, vr, θr, and the observed frequency f are known to the receiver, allowing them to calculate the
actual relative velocity ∆v based on f . The difference in the claimed relative velocity ∆v′ and the ∆v
computed from the Doppler shift measurements can then be used to validate the claimed velocity. The
greater the difference between these sources, the more likely it is that the received beacon contains false
information. By setting a hard threshold, the Doppler shift detector can easily be included in existing
verification frameworks. However, it is also possible to derive a subjective logic opinion on the message
through the difference δ = |∆v −∆v′|.

3This is the opposite of a normal Kalman filter; that would use the message to update the filter state
4The sender can similarly estimate this using a previous message from the receiver.
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Attacking Doppler Shift

Although Doppler shift is an inherent property of signals, an attacker can in principle still manipulate
their signal to be consistent with their message. Here we briefly discuss such an attack and its limitations.
Assuming the goal of the attacker is to convince receivers of a false velocity transmitted in its message,
the attacker may manipulate the transmitted signal (e.g., transmit frequency) to avoid detection by our
scheme. The attacker will thus use a manipulated transmit frequency f

′

0, computed by some algorithm
A that determines the frequency corresponding to the desired speed ∆vdesired, as:

f
′

0 = A(f0, vr, vs|∆vdesired) (6.8)

In a scenario with one receiver, this receiver would calculate ∆vactual based on the observed frequency,
which will match the calculated velocity ∆v derived from the beacon, assuming that such an algorithm
A exists. However, in most scenarios, there is more than one receiver in the network. Notice that in
this attack, a broadcast message will lead to the other vehicles in the network to detect the attack,
since there will still be a mismatch between the false and computed velocities at any other receiver. A
successful attack thus requires that only the target vehicle receives the message. This could in theory
be achieved through highly directional antennas, which can then be used to simultaneously transmit
multiple falsified messages to different receivers. Because vehicles are constrained to roads, and roads
typically have multiple vehicles on them, it is very likely that a third vehicle will be between the attacker
and the victim, or directly behind the victim. The third vehicle will then detect the attack even if the
attacker uses highly direction antennas. A scheme using Doppler shift can thus be highly effective if the
measurements are sufficiently accurate. However, the hardware required to perform such measurements
may not be available in all vehicles.

6.2 Enhanced Detection

In this section, we present the results of our first integrated detection approach [141], the results of which
suggested that the approach taken by Maat is feasible. We discuss the results and their implications in
the following; we have integrated these detectors into Maat, which is evaluated as a whole in Part III
of this thesis. We have re-implemented a number of existing detectors from the literature, as we were
unable to find any detectors with public source code. These are the previously presented acceptance
range threshold (ART), as well as the pro-active neighbor exchange. To study what would become Maat’s
approach, we applied the consensus operator from subjective logic, which is equivalent to the cumulative
fusion discussed in Chapter 5. As part of Maat’s evaluation in Chapter 9, we use these results for initial
parameterization. In that chapter, we also evaluate the other fusion operations that were discussed in
Chapter 5.

6.2.1 Enhanced ART Detector

A main disadvantage of the ART detector developed by Leinmüller et al. [30] is that it can only detect
attackers that claim a location that is outside of the predicted transmission range of a receiver, while
that receiver can still receive the message. The detector will inevitably suffer from false negatives – those
cases where the attacker is in range, and transmits a false position within the transmission range of the
receiver. There is also a significant degree of false positives related to actual transmission range. This
degree of false positives comes from the fact that transmission range is not fixed, but rather changes
depending on properties of the channel and obstacles in the vicinity. In order to resolve these weaknesses
of the detector, fusion with other data sources is necessary. To enable this fusion, we need to convert
the detection result of the ART detector into an opinion.

The idea behind the ART detector [30] essentially assumes a unit disc graph model for the transmission
range, which cannot be considered realistic in any real-world setting. Thus, we propose that the opinion,
which we need for fusion anyway, better represents the actual transmission range. We should thus select
a high belief for nearby positions, high disbelief for positions far out of our transmission range, and
high uncertainty for positions around the edge of our transmission range. To implement this, we chose
a Gaussian distribution for the uncertainty u, with a mean of the expected transmission range (i.e.,
the ART) and a configurable standard deviation σ that should reflect the overall uncertainty about the
potential transmission range. We normalize the uncertainty s.t. u = 1 if the measured δ equals the
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threshold θ and choose the certainty to be 1− u, reflecting that we have evidence for the message to be
trustworthy. The certainty is assigned to belief when δ ≤ θ and to disbelief when δ > θ. This opinion
can now be fused with, e.g., an opinion about the sender or other data-centric sources.

Notice that the approach presented here can easily be generalized to other variables for which the
receiver can compute an independent estimate that can be compared with the message contents. In
particular, for any estimated value δ, mean θ and variance σ2, we can compute:

ω =

 (1− e−
|δ−θ|2

2σ2 , 0, e−
|δ−θ|2

2σ2 ) if δ ≤ θ
(0, 1− e−

|δ−θ|2

2σ2 , e−
|δ−θ|2

2σ2 ) if δ > θ

6.2.2 Pro-Active Neighbor Exchange

As noted by the original authors [30], the pro-active exchange of neighbor tables suffers from high false
positives. In order to improve the overall detection accuracy of the system, we improve this detector’s
output for increased flexibility. As in the enhanced ART detector, we mapped the output to subjective
logic opinions, which represent the degree of belief, disbelief, and uncertainty. In particular, the output
contains an uncertainty that is inversely proportional to the amount of available information.

Upon receiving a new beacon, the receiver computes the distance from the new position information
to each neighbor and decide whether the sender of that beacon should be in the neighbors’ neighbor table
or not. Instead of making the decision at this point, as in the original detector approach, the receiver
constructs two observations; sender is benign and sender is not benign. These correspond to whether
the prediction is confirmed – for example, if the sender should appear in a neighbor’s neighbor table and
it appears, then this is considered as an occurrence of the sender is benign observation. Counting the
total amount of mismatches x, we then compute an opinion as follows:

ω =

(
β

n
e−

x
10 ,

n− β
n

e−
x
10 , e−

x
10

)
,

where β is the amount of benign samples, and n is the total amount of samples.

Based on this detector, if the receiver does not have any neighbor, he will be totally uncertain about
the newly received position information if it is correct or not. The more neighbors, the more certainty
in the detector’s decision.

6.2.3 Initial Fusion Approach: Cumulative Fusion

In [141], we aim to demonstrate the advantages of fusion, and do not discuss how node-centric approaches
can be incorporated into our framework (we refer interested readers to our earlier work [115] for more
details). Therefore, we elected to use the consensus operator to combine two different opinions about
a single beacon message, emphasizing that even this relatively simple fusion operation has potential
benefits for detection accuracy, when compared to the individual mechanisms. The consensus operator,
also called cumulative fusion operator, for two opinions about the same event was defined by Jøsang [144]:

ωA ⊕ ωB = (
bA · uB + bB · uA

k
,
dA · uB + dB · uA

k
,
uB · uA

k
)

where k = uA + uB − uA · uB . This essentially combines the opinions by weighting the evidence from
each actor by the uncertainty of their counterpart. In other words, the uncertainty of A is “filled” by
the certainty of B, and vice-versa. The factor k is used to normalize the result.

In our implementation of the neighbor exchange, we essentially implement a conservative approach
– we assume that which was received previously is accurate. As related work has already shown [30,
33], it is better to consider the age of information, as well as its source, rather than just assume that
new information will fit with existing information. However, this essentially represents a node-centric
approach to detection, which we considered out of scope for this earlier work – our aim was to show that
even a fusion of data-centric mechanisms alone improves detection results.
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Figure 6.6: Comparing different thresholds and variances to configure our enhanced detectors.

85



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
malicious node fraction

0.0

0.2

0.4

0.6

0.8

1.0
Fa

ls
e
 P
o
si
ti
v
e
s

eART

Exchange

Merged

(a) Low density FP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
malicious node fraction

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
s

eART

Exchange

Merged

(b) Low density TP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
malicious node fraction

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e
 P
o
si
ti
v
e
s

eART

Exchange

Merged

(c) High density FP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
malicious node fraction

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
s

eART

Exchange

Merged

(d) High density TP

Figure 6.7: True and false positives for low and high density networks against randomized attackers (i.e.,
transmitting random positions). Low density is after 2 hours of simulation, high density after 6 hours.

6.2.4 Fusion Feasibility Study

Methodology

We use the Veins framework [80] for simulating VANETs, which uses the OMNeT++5 discrete event
simulator to simulate the communication network and SUMO6 to simulate vehicle movement. SUMO
needs map and load data as input – for this purpose, we use the LuST7 [125] traffic scenario, which is
based on real traffic data in the city of Luxembourg. We selected an area in the middle of the Luxembourg
map and started our simulation at three different points in time to simulate different traffic load (and
therefore different channel loads), as shown in Table 6.1. We implemented our detectors in an application
layer class that is integrated into the standard VEINS example. Further simulation parameters are also
shown in Table 6.1.

For all of the following graphs, we use ART to refer to a fixed threshold, eART to refer to our
enhancement of the ART mechanism, Exchange to refer to the pro-active neighbor exchange, and Merged
to refer to the fused result. In all graphs, we compute the false positive and false negative rate of
different mechanisms. The false positive rate is computed by dividing the amount of detected non-
malicious messages by the total amount of received non-malicious messages, while the false negative
rate is computed by dividing the amount of attacker messages that were not detected by the amount of
received attacker messages. This distinguishes our work from that of Leinmüller et al. [30], who used a
non-standard metric. In their work, they use a detection rate and a false positive rate [30]:

The detection rate is given by the ratio of successfully identified position faking nodes ver-
sus the total number of position fakers. In contrast, false positives describe the incorrect
accusations.

5Version 4.6
6Version 0.25.0
7Version 1
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In other words, the detection rate refers to whether any vehicle in the total simulation ever flags a
malicious vehicle as malicious. It is not clear what happens when some vehicles accuse a vehicle correctly,
while others do so incorrectly. In our opinion, this metric is poorly chosen, since it causes the results to be
inherently dependent on the density and size of the simulation. Since density also affects traffic behavior,
which in turn likely affects the performance of this detection (signals may be blocked by obstacles, for
example), this seems inadequate. It is desirable to understand the actual effects of density separately
from the effects that are caused by the experimental design, and these conflated together here.

Parameter Value(s)

Channel Models TwoRayInterference
JakesFading
LogNormalShadowing

PHY&MAC model standard VEINS 802.11p
Thermal noise -110dBm
Bit rate 18Mbps
Carrier frequency 5.890 GHz
Transmit power 10mW
Sensitivity -89dBm
Beacon rate 1 Hz
Attacker probability {0.01, 0.1, 0.2, 0.3}

Table 6.1: Simulation parameters: full source code is available on-line9

Parameter configuration

To select the ART threshold, which should approximate the transmission range, we chose the low density
scenario (2 hours into the simulation), within which we executed our application on all nodes for 360
seconds with a single attacker (5 repetitions). We chose an easy to detect attacker (which adds the vector
(300, 300) to her actual position) for these experiments. This gave us the graphs in Figures 6.6a,6.6b,
showing the false positive and false negative rates over the different threshold values. The rates were
computed by a weighted average over the simulations. This should essentially reproduces the results
from Leinmüller et al. [30] in a more realistic simulation setting, with a moving attacker. However, the
false positive and negative ratios are too high for what they assumed is the transmission range (250m).
Based on these results, we select 400m as the better choice – trading some detection accuracy for less
false positives.

Next, we were interested in whether a different threshold for the pro-active neighbor exchange would
make sense. We performed the simulations again, this time varying that threshold, and arrived at the
results shown in Figures 6.6c,6.6d. Because the true positive rate drops off at a threshold of 400m8,
we selected the threshold to be 350m. This number also reflects the typical maximum distance between
receiver and legitimate sender in our simulations. Having set the essential thresholds of both mechanisms,
we looked at the influence of the variance parameter for our enhanced ART. The results of this analysis
are shown in Figures 6.6e,6.6f, which shows that the merged results of the individual mechanisms slightly
outperforms the basic ART in both false positive and true positive rate. This can be explained by the
fact that only messages with significant uncertainty are influenced by the pro-active neighbor exchange,
which is exactly what we aimed to achieve.

Results & Discussion

The next step in our evaluation was the analysis of the influence of three further factors: different traffic
densities, different attacker types and different fractions of attackers. Compared to earlier work, we
assume that our attackers are typical vehicles, i.e., mobile nodes, rather than stationary attackers. We
formulate several attack strategies:
• a fixed modification (as above) where a specific vector is added to the nodes’ current position
• a randomized modification, where a random position from the actively simulated area is chosen

8Later analysis has shown that the increase at 500m in Figure 6.6d is due to the accuracy paradox.
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Figure 6.8: True and false positives for different extremes of the fixed modification strategy.

• a randomized vector modification, where a random position in a square around the attacker is
selected

To vary the traffic density, we selected three sections of the LuST scenario; the situation after 2, 4 and 6
hours in the area between the SUMO coordinates (2300, 2300) and (6300, 6300). Because each run uses
a different random seed, the individual runs have slightly different densities. The attacker probability
in Table 6.1 is the probability that any vehicle added to the simulation is an attacker, which attacks
with the selected strategy. Because of the same random seed effect, the graphs in this section contain
the actual fraction of attackers on the X axis, and each point represents exactly one simulation run. We
present the most interesting results of our analysis here, which later motivated us to design Maat; full
results can be reproduced using the public source code9.

Figure 6.7 shows results for the random attacker strategy, which shows the first surprising result:
both our fusion and our implementation of the ART detector are nearly invariant to node density, which
contradicts with the result in Figure 8b of the work by Leinmüller et al. [30]. We suspect this difference
can be attributed to the way the authors aggregate their results, as mentioned previously. We additionally
point out that the way in which they generate density differences may also affect the results. In our
approach, the simulated area is fixed, but the amount of nodes increases, while in their case, the density
is reduced by increasing the network size. This affects traffic flow in ways that are different from reducing
the amount of vehicles present, which affects contact times and thus these results. Second, we observe
that our detection approach is quite invariant to the fraction of nodes which are attackers. However, this
result is expected, because both of the detectors we have implemented are data-centric mechanisms, one
of which is completely autonomous. Also, our attackers do not have a collaborative strategy: one could
imagine an attack strategy in which multiple attackers transmit false positions, leading to biased results
from the pro-active neighbor exchange.

A second notable feature of our results is the relatively low true positive rate for some situations,
particularly those where the attacker’s strategy is a relatively small modification of his own position,

9https://doi.org/10.5281/zenodo.1232061
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Figure 6.9: True and false positives for different extremes of the randomized modification strategy.

as shown in Figures 6.8 and 6.9. As discussed previously, there are some attackers which cannot be
detected by looking only at the transmission range, e.g., attackers that introduce a minimal change in
their location. We have chosen not to modify our metric for this case, because it is difficult to find a
reasonable definition of attack if we want to exclude these cases. In particular, our metric also considers
correct messages (i.e., messages where the claimed and actual positions of the attacker are the same) as
messages that should be detected. This weakness also exists in the work of Leinmüller et al. [30], as can
be observed in Figure 8a of their paper. This leads to a very low true positive rate for attackers that
make small modifications to their position. In this section, the main result is that merging information
from different sources leads to a reasonable result in all cases. These results were the initial bases on
which Maat was developed; we discuss the evaluation of the framework, with the detectors presented
above, in the following chapters that cover Maat’s evaluation.

6.3 Subjective Logic for Detectors

Now that we have discussed the various detectors and how we chose to generate their opinions, we briefly
discuss how opinion generation might be done in general. As subjective logic is fundamentally based
on evidence theory, it appears intuitively reasonable that designing detectors to set application-specific
values for their detection results should lead to better fusion results, as more information is preserved. In
this section, we discuss several options how this might be accomplished, based on the designs discussed
above, as well as their advantages and disadvantages. After a discussion of how opinions should be
generated, we also discuss the fusionability parameter mentioned in Chapter 5. This parameter is
essentially a default trust in every detector, and the value to which it is configured determines the
weight of individual detectors over the final result, as well as the amount of uncertainty.
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6.3.1 Integrating Existing Detectors

Our initial proposal [115] specifically included as a requirement that existing detectors can be integrated
into Maat. Other frameworks that use simpler fusion mechanisms have not described in detail how
detector integration works, and due to the added complexity generated by subjective logic, it becomes
even more important to specifically address this point. Therefore, we here explain how existing detector
output can be included into our framework, by specifying how the subjective logic opinions should be
generated in these cases. We first focus on detectors that explicitly evaluate the reliability of data items
(i.e., messages), which can be divided into two categories: those that make binary decisions, and those
that output some kind of trust value. Binary decisions are easiest to integrate through dogmatic opinions
that provide full belief (1, 0, 0, 0.5) or full disbelief (0, 1, 0, 0.5). This is also the approach we initially
took for the re-implementations discussed previously.

Mechanisms that output a reliability value are slightly more complex; before integration into subjec-
tive logic, a normalization step is required, which depends on the domain of the reliability value. For
finite reliability domains, this can be done by simply normalizing the reliability value to the r ∈ [0, 1]
domain, after which a dogmatic opinion (r, 1− r, 0, 0.5) can then be used as the output. Optionally, one
can use uncertainty maximization on this output, which generates the opinion with the same expectation
that has the highest possible uncertainty. This is a procedure described in the subjective logic book [144,
Section 3.5.6] (described for multinomial opinions, but recall that binomial opinions are a special case
of multinomial opinions where |X| = 2). For infinite domains of reliability values, one could convert
the given reliability value into an evidence assignment in the Dirichlet model; the bijective map from
Equation 5.1 can then be used to translate the resulting opinion into an opinion.

Note that converted opinions may preserve information output by the detector, but this does not
guarantee maximal performance for fusion. In particular, when Maat is used with a broad set of de-
tectors that behave inconsistently, it is well-known in the data fusion world that it is impossible to
improve detection results. In other words, generic fusion cannot provide overall higher performance,
since it necessarily relies completely on the detectors – this is analogous to the use of the majority fusion
discussed above. However, subjective logic enables detectors to more precisely express the certainty in
a particular decision; thus, appropriate detector design enables a fusion process that is not hindered by
this fundamental limit. In the next section, we discuss a variety of proposals on how to enhance the
performance of different detection mechanisms.

6.3.2 Opinion Generation

There are many ways in which opinions can be configured; the most suitable way depends significantly
on the semantics of the detector and the data item. As Maat uses a relatively coarse granularity (i.e.,
message level evaluation), it is advisable to modify detector output beyond the simple integration process
described above. In reality, this will be a trade-off between detection performance, cost and associated
risk: designing an optimal opinion for every single possible scenario is not realistic. Therefore, we provide
additional recommendations that limit the scope of such work, which are based on generalizations of
certain detectors.

One special class of detectors is those that are essentially threshold values that represents an ap-
proximate maximum. This class includes the ART and SAW detectors discussed in this chapter. For
these mechanisms, a potentially reasonable assignment of opinions has an uncertainty of 1 at the thresh-
old, with the belief and disbelief respectively increasing as the value is closer or further away from the
threshold. For example, for the ART, the belief increases as the claimed position is closer to the receiver,
while the disbelief increases as the claimed position is further away. This represents the fact that the
acceptance range is likely to be strongly dependent on environmental conditions.

The configuration of belief and disbelief change is a choice that should be made with the detector’s
properties in mind. For the individual detector, the actual choice for this is completely irrelevant, since
by definition a positive belief or disbelief combined with uncertainty alone always provides the same
decision as a plain threshold. However, the advantage is that the amount of uncertainty directly implies
confidence, which is used varyingly by different fusion operators. One generic proposal that we make,
which was used for the ART and various other detectors we apply in our tests, is to assume a normal
distribution and experimentally estimate the behavior of the tested value by the detector. The opinion
for this is given by Equation 6.3.2, where δ is the measured value, and the correct behavior is assumed
to be normally distributed N (θ, σ).
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Note that this process describes a rough estimation, not an accurate evidence vector as done in the
Dirichlet model. It is in principle also possible to generate opinions by using the standard frequentist
interpretation of a value in the domain of the opinion, and counting the frequencies of true and false
statements. The problem with this approach is that it requires a rigid formulation of the domain X that
is the same for every detector’s view of a data item. In particular, this also requires that every counting
step is independent, and that each trial is a measurement of the same variable. This latter condition is
the one that is typically violated in our model, because we do not (just) sample the statistical behavior of
message propagation through the network (in the case of ART), but also the relative positions within the
simulation. An alternative might be to use a much more precise belief assignment with hyper opinions
(which at least in principle allow infinite domains of the form Rn), but the storage costs of such opinions
make this infeasible. This is because such opinions would have 2k− 1 degrees of freedom, where k is the
set cardinality of the event (|Rn|). This issue may be solved by future research to optimize this naive
storage approach, for which we make brief suggestions in Chapter 11. For the remainder of this work, as
discussed in Chapter 5, we instead rely on binomial opinions, which necessarily involves simplifications;
this is our justification for using the estimate above. We rely on a combination of fusion and validating
tests to determine the correctness of the system, as described in the evaluation part.

Alternatives to Normal Distribution

There are a variety of alternatives to the assumption of a normal distribution as a model for how belief
and disbelief should change. Although it is likely that alternative distributions of the belief and disbelief
mass will provide a more solid foundation for detectors’ opinions, we relegated the task of choosing
these distributions for future work. This is primarily because appropriate fusion mechanisms are more
the focus of this work; however, there are also two technical reasons for this decision. First, there is
a severe lack of real-world data even with regards to valid behavior for most detectors. Taking again
the acceptance range threshold as an example, choosing the appropriate and statistically valid opinion
here requires experimental data on how frequent a message reception occurs that is further away than a
certain threshold θ. Propagation and shadowing models provide an initial indication of how this system
behaves (which we used to arrive at estimates for reasonable values of θ, as discussed earlier in this
chapter).

The second reason we did not investigate this in detail is that the tuning of existing detectors is
not scientifically significant. Ultimately, tuning detectors is an engineering task that is better suited for
industry, where currently unknown factors such as vehicle properties come into play, which cannot be
assessed accurately in advance. Making the required assumptions to come to a meaningful result likely
implies that the results we arrive at are difficult to transfer to the real world. We have already briefly
discussed that transferring the model used for the expression of opinions is difficult to transfer between
detectors; this directly connects to the assumptions required for such a setup. We instead focus on fusion
of imperfect detectors, which is something that is much easier to transfer to high quality detectors that
may be developed for the real world.

Future work could look for specific classes of detectors that could be modeled with more precision,
as well as provide a methodology and tools to make the design of high quality detectors easier. One
promising path for this process is to look more closely at the relationship between opinions and Dirichlet
models. However, there is a deeper question that should also be addressed, related to data granularity
in the world model. Recall that data items in our model refer to claimed facts. One key challenge is
facts can be multifaceted (e.g., position, heading, speed claims combined with various other facts), and
they are sometimes mutually exclusive. In our current model this complexity should be captured by the
detector (i.e., each detector provides self-consistent opinion outputs); one consideration was to extend
the world model to represent these facts. As there are no implementations of the necessary subjective
logic constructs, especially to map between different domains, we kept the complexity in the detector for
this thesis. However, we think this might also be a fruitful direction for future work.
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6.3.3 Detector Weights: Fusionability

As discussed in Section 5.5, we use a fusionability parameter that decides the default weights of every
detector. In subjective logic terms, it is the trust of the system in this particular detector. Because
we fuse the different paths between system after trust discounting through our opinion in the detector,
the choice of the fusionability parameter influences how fusion will perform. Note that the parameter is
therefore also an opinion that should be chosen. We set the fusionability parameter to be an uncertainty-
maximized opinion that quantifies the trust in our detector. As described in detail in our evaluation, we
experiment with different values for this parameter.

The essential problem this parameter is aiming to solve is that some detectors may perform poorly,
either due to poor design or poor parameterization. The fusionability parameter addresses this challenge
by bounding the impact any one detector has on the final fused result. This applies to all subjective
logic operators, but not to the baseline operators (such as MIN and MAJ), which do not directly use the
relative uncertainties of the input opinions.

Poor performance can have various causes, such as an incorrectly configure opinion (i.e., the dogmatic
opinions issued by detectors without support for subjective logic), as well as by errors or attacks. Errors
here refer to classification errors made by the detector, which can be caused by programmer error or
due to the fact that detectors cannot always distinguish attackers from benign vehicles, particularly if
those vehicles behave very close to benign. Similarly, legitimate vehicles sometimes have a behavior that
could be considered malicious10. There is some spectrum between errors and attacks: an attacker can
also intentionally craft messages designed for misclassification, for example by manipulating some fields
but leaving others untouched. Building detectors that provide dogmatic output or extreme confidence
and fusing these opinions directly is therefore a bad idea, unless such a detector covers all possible
attacks. However, with a detector that can detect everything, fusion becomes unnecessary (and we have
previously argued that such a detector is fundamentally hard to design). Thus, fusionability is expected
to increase performance of the fusion process in most cases.

6.4 Conclusion

This chapter introduced the detectors designed and implemented during Maat’s development. Some
detectors were found to be unsuitable, namely the OPD (which had very poor performance) and the
pro-active neighbor exchange (due to its massive communication overhead). We also discussed early
results that we used to assess trade-offs between the ART and the pro-active neighbor exchange, which
we used in our early experiments to study the feasibility of fusion. We learned how to design opinions in
such a way that their opinions can be meaningfully fused, rather than essentially amounting to a simple
majority decision or a minimum (i.e., if either detector detects an attack, this is marked as a positive).
We used the cumulative fusion operator to merge these results, but as discussed in Chapter 5, we later
determined this operation may not be usable for this purpose. After refining our design to the full Maat
design that was described in Part II, we can now move to the evaluation of Maat.

10In principle, it is possible to design detectors for which this does not happen. However, such detectors are typically
close to useless, because they do not detect the vast majority of “interesting” attacks, i.e., those attacks that lead to some
response from the victim’s application. For example, the ART could be modified to have the maximum range of a DSRC
propagation as a threshold (about 1000m), but most interesting attacks concern manipulated messages whose modification
is significantly below 1000 meters.
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Part III

Evaluation
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Chapter 7

Evaluation Methodology for
Misbehavior Detection

This chapter describes the overall evaluation methodology applied in this thesis. We briefly describe
the different approaches available to us (simulative, analytical and experimental), before explaining the
attacker model and the corresponding attacks. Furthermore, we also consider the available metrics in
this chapter, introducing several new ones as part of our contribution. Part of our contribution is to
make a significant step forward in the methodological validity of evaluation done in this field, which
is discussed throughout this entire third part of the thesis. As an additional component, we discuss
an extensive analysis of attacks on CACC, one of the major application areas of intelligent transport
systems, previously published at VNC 2017 [159]. The text in this chapter is also partially based on earlier
publications at the Fachgespräch Inter-vehicle Communication 2017 [158] and SecureComm 2018 [172].

7.1 Overall Methodology

Cooperative intelligent transport systems are one area where misbehavior detection provides a significant
benefit, because integrity is more important than confidentiality, and the data correctness plays a much
more significant role than for regular networks. The literature has already developed many schemes,
which are evaluated in widely different ways and with very different tools. Some are analytical, some are
simulative and sometimes there are limited experimental cases.

Similarly, the data that is verified is usually application-specific, and not independent of other sur-
rounding vehicles (i.e., a ground truth cannot be established for just the particular message content
that is being evaluated), which makes analytical approaches very difficult, since one cannot extrapolate
results from small examples. Additionally, analytical approaches often require simplifications that could
again be exploited by an attacker. Experimental approaches have different issues; experiments are ex-
pensive to perform, and cannot necessarily be applied to all settings, especially when the consequences
are dangerous (e.g., attempting to trigger a crash on a highway for experimentation is not ethically or
financially feasible). Nevertheless, experimental approaches can still provide some benefit in estimating
the behavior of a system in an attacker-free environment, and the resulting dataset can be artificially
extended with attacks [98].

Work on intrusion detection system (IDS) validation has already seen that it is difficult to compare
results between IDSs, but this is made harder by the fact that misbehavior detection systems (MDSs)
analyze application-specific data. This data is dependent on real-world behavior and application state,
and is therefore more unpredictable than the regular, well-defined behavior of, e.g., network protocols.
Many other questions play a role: should detection happen on a per-packet basis or a per-node basis?
Is the goal to eventually detect all attackers, or to detect the most attackers with the lowest latency?
What kind of attacks are considered? Is there application logic that tries to be fault tolerant?

The evaluation of misbehavior detection mechanisms is often strongly influenced by what kind of
attacks the authors were considering. This makes comparisons across published results very difficult.
There seem to be no satisfactory evaluation metrics in the literature that both catch the subtleties of
misbehavior detection, while still remaining general enough to be applicable to more than just a specific
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mechanism.

7.1.1 Evaluation Strategy

Simulation-based evaluation strategies enable reliable and reproducible experiments in a variety of set-
tings, and enable analysis of detector performance on a large scale. Although there has been work on
empirical analysis of attacks [98], such studies are extremely difficult to generalize and verify without a
significant deployment of vehicular communication systems, which are still in their deployment phases
at the time of writing. There is a wide variety of network and vehicle behavior simulation tools, with
different scenarios; however, previous authors have already given extensive analyses of such tools [81,
138].

Instead, the question that should be central is what variables could have an impact on overall detection
performance, and which should be analyzed individually to make general statements about the suitability
of a detection mechanism. Important parameters here include the number of attackers, the number of
legitimate vehicles and the driving scenario. By studying these parameters, authors can gain an insight
into whether their detector has weaknesses in specific scenarios, and how it performs when significant
message loss is encountered, and these are often also used in the evaluation of vehicular applications. In
all cases, repetitions under different simulation seeds are used whenever probabilistic models of, e.g., the
communication channel are considered. The number of attackers is a first step to determine whether the
detector is resilient against attacks.

Resilience against attacks is a metric that is difficult to quantify, however; it is particularly challenging
to consider sufficiently distinct attacks, and to implement these attacks correctly. Because detectors are
often designed to detect specific attacks, it is tempting to implement exactly these attacks and then show
that the detector performs well. Therefore, it is important to clearly specify the attacker model, including
how exactly this attack works, and whether or not attackers can cooperate (collaborative attackers) and
whether or not attackers can create a limited amount of additional identities (Sybil attackers). In
the latter case, the attacker uses different pseudonymous identities that are possibly linkable by an
authority; in the former case, multiple independent vehicles are attacker-controlled (e.g., this could be
due to malware).

In this thesis, we apply a simulation-based evaluation strategy with a strong focus on reproducibility
and extensibility. The goal is, in essence, to make it easy for future research to falsify the results through
improved attacks and/or detectors. To this end, we publish all associated code and data for re-use
by other researchers. We use the well-known VEINS [80] simulator as a basis for all our experiments,
as this is an established open-source simulator that already provides a solid base line for simulation
of vehicular networks. In particular, there is a realistic traffic scenario called LuST [125], as well as a
platooning extension Plexe [122], which together cover the use cases we are interested in. For platooning,
we design an attack that is dedicated to a specific attack goal (disrupting the platoon), which enables
us to compare the resilience of controllers. For a comparative analysis of detection mechanisms, we are
primarily interested in the ability to detect attacks in the abstract; for perfect performance we require
that all messages from the attacker be classified as malicious by all vehicles. This provides a pessimistic
estimate of detector performance, which is useful if the goal of the attack is unknown. The attacks we
implement are based on state of the art work, and we allow for a high attacker penetration (up to 30%,
close to the limit of what is decidable). As we assume no particular attack goal, we do not implement
cooperative attacks in this work; the only cooperative effects we will see is that multiple attackers apply
the same attack algorithm. This mimics a malware that causes misbehavior within a broad set of vehicles,
without requiring communication between the attacking vehicles.

7.1.2 Evaluation Metrics

Having considered the evaluation strategies, we next consider appropriate metrics for validation. Choos-
ing multiple metrics is important, because usually detectors represent some kind of trade-off between
different outcomes. It is therefore important to clearly state what the evaluation metric is. This means
that different metrics need to be considered, requiring an evaluation strategy and study design that is
as independent from the evaluated mechanisms as possible.

Most papers discussing detectors evaluate these through some measure of detection quality. However,
there are many different strategies and nuances to this process, both in terms of the chosen metrics and
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Table 7.1: Example confusion matrix for a detector. The detector classifies each message as malicious
or legitimate (columns), and the base line is represented by whether it is an attacker or benign message
(rows). The items in this matrix correspond to true positives (100), false negatives (50), false positives
(150), and true negatives (9700).

Classified as Malicious Classified as Legitimate
Attacker Message 100 50
Benign Message 150 9700

how the results are analyzed. Because misbehavior detection specifically is something that is fundamen-
tally dependent on application data, generalizing results is more difficult than for regular classification
tasks. This is particularly relevant when evaluating the large-scale effects of wide-spread misbehavior.
For example, consider position falsification attacks: the ability of detectors to correctly classify this
attack greatly depends on the receiver’s position relative to the sender. As such, it matters how the de-
tection results are over different vehicles. Similarly, it is important to consider whether one is evaluating
immediate detection (i.e., directly after reception) or eventual detection (i.e., does the receiver eventually
recognize the attack). In our work, we focus primarily on the former, and in that case the question is
also raised whether we should compute our metrics per vehicle, and then computing statistics over the
vehicles, or whether we should aggregate all reception events and applying the metric to the result.

Confusion Matrix

The most obvious approach to evaluate the quality of a detector’s results is to use the confusion matrix,
which is also used in other fields (e.g., medicine and machine learning). This matrix essentially counts
false positives, false negatives, true positives, and true negatives, as well as their rates with respect to
the entire population. An example of such a matrix can be found in Table 7.1. Metrics derived from this
include accuracy, which is the amount of correctly classified events divided by the total population, and
false omission rate, which is the amount of false negatives in the set of all negatives. Most papers in the
area of misbehavior detection that use this type of metric use the false negative rate to quantify the risk
of missing detections, and the false positive rate as the risk of an incorrect detection event. Opinions
differ widely on what acceptable values are (e.g., for intrusion detection in networks with a lot of traffic,
a false positive rate over 0.001 per packet is considered very bad), and it is difficult to make general
statements about this, because the impact of a false detection event is significant.

However, it is actually not trivial to classify a detectors’ results into these categories when evaluating
the detector in a simulation. Recalling the previous example, in distributed detection scenarios such as
C-ITSs, proximity to the attacker plays a significant role in how likely a vehicle is able to detect an attack.
Not all nodes in the network will hear all messages, so if the data is aggregated across different detectors,
one must take care to normalize these results. Instances of a detector do not necessarily produce the
same output for a given message (due to differences in internal state between vehicles), and not every
message is seen equally often, due to the broadcast nature of these networks. Simple normalization may
not be sufficient here: if a specific subset of receivers produces a very high false negative rate, while the
aggregate of all receivers on average performs very well, this could still mean the detector is bad. In
other words, aggregating and normalizing over an entire simulation may hide the fact that there is a
weakness in a specific scenario.

Having established a way to normalize and aggregate the detection results still leaves other questions
open. The definition of the input of the detector is one of these factors: does the detector take a
single message and output a classification, or does it take a stream of messages and output an eventual
classification? In the latter setting, one needs additional metrics to establish the timeliness of the system
(e.g., detection latency: how long does it take for a detector to correctly classify an attack, after this
attack starts?).

For a data-centric setting, using the confusion matrix is particularly difficult, because of the fact that
many attacks are impossible to distinguish from legitimate messages. This can happen in two cases:
either the message was sent by an attacker, but follows the expected behavior of vehicles (i.e., it is not a
malicious message), or the attack is so marginal that it has no impact (and is thus indistinguishable from
expected behavior or sensor noise). For example, an attacker might transmit a beacon with a position
a few centimeters from its actual position. This led some authors to conclude that application-oriented

97



evaluations may be more suitable: if the attacker cannot achieve a goal, because the impact of false data
is too small, then clearly the detection mechanism is effective. The disadvantage of this strategy is that
the evaluation depends not only on the simulation aspects and the attackers’ implementation, but also
on the application implementation.

For data-centric detection mechanisms that are based on consistency, i.e., they consider multiple data
sources and detect inconsistencies, it is often implicitly assumed that previously received data is true,
and only the incoming packet is classified as legitimate or malicious. However, this means that message
order is particularly significant: whenever a malicious message arrives first, it may trigger an additional
false positive, because the next legitimate message differs from the malicious message.

Many papers implicitly discuss that detectors should also perform revocation or response – they
exclude specific messages from those that are received, in order to prevent errors in the application.
Similarly, some detection algorithms are inherently incompatible with the idea of evaluating individual
message on a sequential basis, because they perform some batch processing (e.g., classifying vehicles
instead of messages [71]).

Some authors use a pre-classified set of messages, which is not necessarily data-centric (e.g., Grover et al. [71]
use a set of 3101 legitimate and 1427 malicious samples, with several types of attacks). This is common
in the field of machine learning, where classifiers are often tested using this type of approach. However,
since most detection algorithms in C-ITSs have different inputs, it is difficult to find a conclusive set
that considers these various inputs, as well as contain the necessarily distinct types of attacks (especially
when reputation is considered, which can be built over time). In other words, this approach is only
valid if each sample is well-defined, which is not the case in our more general setting. Finally, note that
these message samples are not publicly available (as far as we are aware, the only exception here is our
work [172]).

Alternative Accuracy Metrics

This led authors to use application-specific or detector-specific evaluation strategies, in order to demon-
strate specific strengths of individual detectors in comparison to others from the literature.

Application behavior metrics In many C-ITS scenarios, the specific values transmitted by an at-
tacker are not necessarily relevant, but what is of interest is whether a receiving vehicle makes incorrect
decisions about the state of the world. Application metrics aim to capture this subtle concept into a
concrete metric. These metrics are useful, because they can also consider errors from other (i.e., non-
malicious) sources, and are independent of a deep understanding of the detection mechanism. However,
they require an application implementation, which is bug-prone and makes attacker implementation more
complex.

One specific category application metrics is that related to schemes that detect routing misbehavior.
Because routing misbehavior is historically closely linked to evaluation of routing schemes, some authors
use routing performance metrics (such as arrival rates, consumed bandwidth and similar metrics) and
changes to vehicle mobility [30, 51].

Another class of application metrics is much closer to the data that many data-centric detection
mechanisms analyze; for example, this includes collision avoidance applications [53, 75] and in-network
aggregation [103]. A disadvantage of these strategies is that it is hard to use them as a baseline for other
studies, because often they are very specific.

Detector specific metrics Some detectors have known sources of potential errors, often inherent to
their design; a common strategy to deal with this is to approach and analyze these issues specifically.
This is particularly useful when it is very clear what kind of error sources are to be considered. For
example, Bißmeyer et al. [45] used this type of metric to also include GPS error as a potential source of
additional false positives for their scheme to analyze these effects in detail.

Another example of such an approach would be an evaluation the impact of the attacker on the
analyzed variable. This only works for continuous variables, such as position information, where a simple
distance metric is available to estimate the error between real positions and falsified positions. Rather
than looking at how well attacks are detected only, this strategy would measure the distance between
accepted attacker-generated data that is accepted as valid, and use this as a metric for detection quality.
This approach is also viable if error sources are considered for legitimate vehicles. A disadvantage of this
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approach is that it may only be suitable for specific classes of detectors (or at least, it may put other
detectors at a disadvantage).

Other Metrics

There are many other types of metrics available to authors seeking to evaluate their detection mecha-
nisms. Some notable examples include:

Detection Latency The time required for an attack to be detected. The exact definition of this metric
differs type of detector, but typically it is the time between the first malicious packet received and the first
detected malicious packet. This is particularly significant to measure the impact of reputation abuse in
trust-based node-centric detection mechanisms: if trustworthy vehicles transmit malicious information,
the potential impact of an attack is large.

Computational Cost Although relatively uncommon for misbehavior detection in vehicular net-
works1, more traditional benchmarks such as computational cost can also be used. Most authors only
check whether reasonable estimates of locally received messages can be analyzed in reasonable time
(which, using 100 vehicles in range transmitting at 10Hz, is at most a millisecond per message), but
particularly with proposals that include multiple detectors, scalability could be an issue.

Financial Cost Traditional IDSs are commonly evaluated by examining the cost associated with
response and the corresponding variants in the confusion matrix [15]. In the case of vehicular networks,
this is a bit more complex: the cost of a false negative is difficult to estimate, and strongly dependent
on the scenario (i.e., high speed collisions have much higher cost, even though the classification of the
event is exactly the same). Estimating this cost is also ethically complicated, because human lives are
included in this process, which suggests that such an evaluation requires more extensive knowledge on
how to deal with this suitable (as done, e.g., in invasive medicine).

Stability & Usability One factor that is often forgotten or stated as future work only is that the
detection mechanism should be sufficiently stable, such that the users’ experience with the system is good
enough. This is important, because users’ trust in the system is strongly dependent on their perception
of the systems’ reliability. If the system continually warns or makes changes in response to possible
attacks (high false positives), but has an overall high accuracy than other systems, then users may still
perceive that system as very unreliable.

7.1.3 Recommendations for Simulation-based Evaluation of MDSs

We recommend authors to follow the developments in the simulation community, and make use of
extensive standardized scenarios, such as the LuST scenario [125] for traffic simulation. This also includes
pro-actively porting source code that is under development to more recent versions of the simulation
environment wherever possible: ideally code should always be based on the most recent stable version of
the simulator available while the paper is under review. This allows authors to benefit from improvements
in the simulation environment and simultaneously consider new features, such as newer channel models.

For reasons outlined above, we also recommend using a variety of different attack strategies, which
ideally have very different goals. This ensures that the authors can describe the qualities, as well as the
limitations of their detector, which in turn can help future authors decide whether new attacks against
this detector may be possible. It is also important to define a baseline in addition to these attacks, which
can be undertaken in various ways (and this depends strongly on what the authors actually designed),
and if possible a simulation of potential non-malicious sources of error. The simplest example is GPS
error: adding an error to a GPS coordinate is relatively simple, but it makes the results much more
representative than an idealized perfect positioning system for each vehicle, where it just “knows” its
position.

The authors should at least consider how they aggregate the detection results across messages, ve-
hicles and simulation repetitions, as discussed above, and clearly specify their approach. If possible, we

1We are not aware of any such studies.
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recommend developing the simulation in such a way that multiple aggregation approaches can be used;
there may not be a one size fits all solution.

Finally, we recommend publishing source code2, or at least making it available to other researchers
on request. This enables reproducibility, one of the core principles of scientific research, which allows
research in this area to make faster and more meaningful progress. It also enables studies that analyze
the behavior of a variety of algorithms in different settings a much more efficient and less error-prone
process. Finally, the authors themselves benefit from this process, because it is easier to compare to the
literature.

7.2 Metrics for Misbehavior Detection

In this section, we discuss the different metrics that are used in the evaluation of Maat and C-ITSs in
general. We identify three categories of metrics that can be applied effectively: large-scale detection
performance metrics, detector limitations and application metrics.

7.2.1 Background

Detection performance is a complicated and multi-faceted issue, whose definition also varies across pub-
lications, depending mostly on the purpose of the detector. Even in intrusion detection in general, it
is considered a challenging, non-trivial trade-off to determining how to evaluate detection mechanisms
and how to choose the appropriate mechanism for deployment [15]. In misbehavior detection specifically,
many authors use false positive/negative rates or equivalent metrics to determine how well attacks are
detected, and this is combined with other performance metrics (such as latency, or application-specific
metrics). Although these metrics are useful to compare performance of mechanisms, we find that there is
a lack of metrics that are useful to figure out where weaknesses of existing detectors are. In this section
we propose an additional metric that fills this gap, which can be used by developers to tune detectors,
and to determine where new detectors are needed.

Another issue that should be addressed is specific to detection in distributed peer-to-peer systems:
how should detection metrics be aggregated across participants? For example, given a simulation with
two honest vehicles and one attacker, how do we characterize the detection performance of the same
detection system (running within two vehicles independently)? We previously touched on this issue in a
discussion with the vehicular communication community [158]. In our evaluation, we will quantify the
detection quality by classifying every detection event as true/false positive or as true/false negative; a
detection event occurs whenever a message is received (i.e., we assume the detection decision is made
as soon as possible after reception). We aggregate these results by counting the errors generated by
detection events, not in terms of sent messages or participants. Which aggregation method is chosen is
highly relevant for the interpretation of the results: in this work we focus on detection events to obtain
a picture of the overall quality of the results. Aggregating by message provides information about how
well a specific message sent by the attacker is detected, but presenting the results in terms of detected
messages would mean that the amount of receivers is completely disregarded. Similarly, aggregation
by participant ignores how much contact this vehicle has with the other vehicles. Since the amount of
messages between vehicles is also indicative of a potential impact of an attack, aggregation by detection
events is the best approach for an overall evaluation of detector performance. However, we point out
that these metrics can also be implemented with our dataset, since we provide message and sender labels
for every message.

7.2.2 Large-scale C-ITS Metrics

The first metric we use to decide the quality of the detector is based on the confusion matrix, as mentioned
previously. An intuitive choice for large-scale evaluation might be accuracy, which defined as the number

2This goes back to a common argument in computer security with respect to responsible disclosure. A commonly
raised concern is that this process will enable attackers to compromise vulnerable systems. In this specific case, there is an
easy refutation to this argument: first, attacks on simulations are not (necessarily) attacks on real systems, and second, a
scientific publication should already contain sufficient details for reproducibility. In both cases, implementation effort is the
only thing that separates cases where source code is not public from those where it is. This effort is considered negligible;
however, publishing the source code makes it much easier to build detection systems, improving the overall security of
many systems.
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Table 7.2: An evaluation of an imbalanced dataset may lead to misleading conclusions if the accuracy is
used to decide the optimal classifier. In this example, there are 10000 messages to be classified, of which
only 100 are malicious. Therefore, a classifier that attempts to correctly classify everything (MDS 1)
performs significantly worse on this dataset than a classier that simply assumes there are no attacks
(MDS 2). This is referred to as the accuracy paradox.

MDS 1
Classified as Malicious Classified as Legitimate

Attacker Message 100 50
Benign Message 150 9700

Accuracy of MDS 1: 9700+100
9700+150+50+100 = 98%

MDS 2
Classified as Malicious Classified as Legitimate

Attacker Message 0 150
Benign Message 0 9850

Accuracy of MDS 2: 9850+0
9850+0+150+0 = 98.5%

of correct classifications (TP + TN) over all classifications (TP + FP + TN + FN), appears intuitive
but suffers from the accuracy paradox for imbalanced sets. This is illustrated in Table 7.2. It is thus
considered good practice [16, 137] to always provide a quantification with two values, showing the trade-
off between increased false positives to reduce false negatives and increased false negatives to reduce
false positives. One such formulation is the use of precision and recall : precision quantifies the relevance
of detection events (TP/(TP + FP )), while recall quantifies what rate of positives is actually detected
(TP/(TP +FN)). An optimal detector thus has a precision and a recall of 1; how significant a deviation
from this value is acceptable depends strongly on the application.

The state of the art [170] typically reports false positive (FP/(FP+TN)) and true positive (TP/(FN+
TP )) rates, which provides a different and significantly skewed picture in certain situations, as discussed
in machine learning literature [16, 137]. Specifically, precision and recall are more informative in situa-
tions where a binary classification task (e.g., packet maliciousness decisions) is performed on an imbal-
anced dataset. As our dataset contains attackers in different degrees, and the amount of decisions made
for attacker-transmitted messages (TP + FN) compared to the amount of decisions made for benign
messages (FP + TN) is significantly different, we should thus prefer precision recall curves. As pointed
out by other authors [16], a detector that is better in the precision-recall (PR) graph is guaranteed to be
better in the receiver-operator curve (ROC) graph; the interpretation process is generally similar (i.e.,
which curve is closer to the optimal point).

PR graphs provide us with an overall estimation of detector performance, but they have an important
disadvantage: they are generally not as easy to interpret as a graph with FPR/TPR (referred to as an
ROC curve). This greatly impacts the use of PR graphs in the literature: not only are they somewhat
harder to understand fully, PR graphs often “look much worse”, as demonstrated by Davis & Goad-
rich [16, Fig. 1]. This figure shows that the ROC curve can look close to optimal (the area under curve
(AUC) is large), while the PR curve for the same data looks much worse (the AUC is small). This is
partially related to the fact that interpolation between points on a PR curve is non-trivial; for details,
refer to [16]. In addition to this issue, PR-graphs do not provide information about where potential
flaws of individual mechanisms are, or whether a combination of multiple detectors can out-perform the
individual mechanisms (as we argue in previous work [115]). In this work, we this use the PR-graphs in
combination with our new metric, based on the Gini index.

7.2.3 Evaluating Detector Limitations

To study the limitations of detectors without arbitrarily guessing which factors may influence such
detectors, we design a new metric to find indications of such influences. The idea of our metric is quite
simple: examine whether the distribution of erroneous classification rates (i.e., false positives and false
negatives) is uniform over the receiving vehicles. If this metric says the distribution is uniform, the
detector performance is not dependent on factors that are varied in the simulation, such as which vehicle
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executes it, or the relative position between the receiving and sending vehicle. On the other hand, if
this distribution is extremely skewed, the conclusion is that the detector performance depends a lot on
the context of the vehicle. We expect this is the case for many misbehavior detection schemes (and
indeed most of the literature just assumes this is true), but it is also valuable information to know where
the discrepancies occur. This enables further investigation into the detector’s strengths and weaknesses,
and finding a skewed distribution would suggest that combining the results of different mechanisms is
the way forward. Note that this is not a qualitative metric: uniformly good or poor error dispersion
does not imply that a metric is significantly better or worse, it only suggests whether there is room for
improvement.
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Figure 7.1: This figure shows an example of the Gini coefficient as used in economics. The Gini coefficient
is computed as the ratio of the marked areas around the Lorenz curve: A/(A + B). The Lorenz curve
represents the cumulative plot of the population income after sorting from low to high income.

Given this intuition, we investigated and found a metric for statistical dispersion that is commonly
used in sociology and economics to measure income inequality: the Gini coefficient or Gini index [177].
The idea can be visualized by sorting people by income in ascending order and then plotting the cumu-
lative fraction of this list against the cumulative income of that group. This can be seen in Figure 7.13,
where the Gini coefficient is used to quantify income in-equality. The coefficient is computed as the ratio
A/(A+B); as the Lorenz curve approaches complete equality, the area A approaches zero; a high Gini
coefficient thus corresponds to high inequality. More formally, the Gini index G of a population with
mean size µ and value xi assigned to individual i is defined as [177]:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2µ

(7.1)

The Gini index itself is not novel, nor is its application to quantify errors (see e.g. [153]), but our
application of it is slightly different: we propose that it can be used effectively to determine the statistical
dispersion in the error rates across vehicles. The reasoning is that computing the overall performance
as discussed in the previous section hides localized effects associated with individual vehicles. Thus, if a
mechanism has some regions where it performs really well (e.g., a highway), while it performs very poorly
in other regions (e.g., urban settings with lots of traffic lights), these effects will be averaged out in the
overall performance. If the overall performance is reasonable, one can use the dispersion in the error
rates to determine whether this happens both for false positives and for false negatives (the latter being
dependent on the attack): the higher the Gini index of these rates, the more differences exist between

3This is a public domain figure, taken from: https://commons.wikimedia.org/wiki/File:Economics_Gini_

coefficient2.svg
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…

leaderfollowers

i+1 i 0
v0, a0…

di

Figure 7.2: An example of a platoon, with the leader in front and a list of followers behind it. The
headway distance di refers to the distance that the ith vehicle observes to the vehicle in front of it.

vehicles. However, if performance is poor overall, the Gini index can still be close to zero (or conversely,
be close to 1); the arrays (0.1, 0.1, 0.1, 0.1) and (0.9, 0.9, 0.9, 0.9) have the same Gini index of zero. There
are at least two main ways to use the result of this metric: 1) investigate the vehicles on either side of
the skew and see whether the detector can be improved by changing its functionality or 2) investigate
whether fusion can be used to exploit low amounts of errors produced by different detectors in different
scenarios.

7.2.4 Application Metrics: CACC

For our work on CACC, we aim to analyze the effectiveness of various attacks on different CACC
controllers. Recall from Chapter 2 that CACC is an application in which a group of vehicles, referred
to as a platoon, aims to increase traffic efficiency by reducing the following distance between vehicles.
Essentially, the idea is that communication allows faster response, and thus a lower following distance.
An example of a platoon is shown in Figure 7.2. The coordination of a platoon is typically performed by
the leader, who is responsible for managing the platoon [121] (e.g., vehicles joining the platoon). Each
vehicle employs a controller that takes as input the measurements and received information, producing
as output a new desired speed for its vehicle. Different controllers use different information sources; some
use all messages exchanged in the platoon, while others only use the leader or the preceding vehicle (i.e.,
the vehicle directly ahead).

The goal of our attacker is to either cause a crash or maximize instability of the platoon. As such,
we distinguish between two cases: a crash or some instability. If a crash occurs, impact velocity ∆v
is used to quantify the impact of the attack (medical research suggests that this is the best predictive
factor for injury [5]). If there is no crash, we quantify the instability in the platoon for the remainder
of the simulation (approximately 30 seconds). Since all the studied controllers have been shown to be
string stable, we can assume that the platoon eventually stabilizes. The option we chose is maxs,i,t(e),
where s is the simulation run, i is the ith vehicle in the platoon, t is time and e is spacing error, which
most accurately represent the worst case. This was inspired by earlier work [150], where a similar metric
is used. The spacing error is defined as the difference between the desired distance of the controller
and the actual distance between two vehicles. The alternative metrics were avgs(avgi(maxt(e))), the
average maximum spacing error, and avgs(avgi(maxt(a))), the average maximum acceleration, both of
which can be considered metrics for passenger comfort. Usability studies have shown [55] that spacing
is important for user acceptance; we included the acceleration as an additional metric, which is also
common in transportation research. Averaging over simulations and vehicles allow us to estimate the
average comfort of all vehicles in a platoon; however, the maximum spacing error more accurately
represents the potential inefficiency and risk due to an attack, which is why we decided on this metric4.

7.3 Studied Attacker Models

For the metrics discussed above, attacks are needed to determine how well a system performs. Our
attacker model is consistent with that discussed extensively in our survey article [170], an improved
version of which is also discussed in Chapter 1. However, we constrain ourselves to attacks that are
misbehavior, rather than also including a variety of cryptographic attacks. This is in part because
existing work already adequately defends against cryptographic attacks (e.g., the US SCMS [168]), and

4The data repository for the paper contains data necessary to deduce the other metrics; see https://github.com/

vs-uulm/vnc2017-CACC-data.
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Table 7.3: Attacker parameters for large-scale attacks

ID Attack Parameters
1 Constant x = 5560, y = 5820
2 Constant offset ∆x = 250,∆y = −150
4 Random uniformly random in playground
8 Random offset ∆x,∆y uniformly random from [−300, 300]
16 Eventual stop stop probability + = 0.025 each position update (10Hz)

for our work we aim to detect attacks that cannot be protected against using existing means. Similarly,
we exclude the parallel field of routing attacks from our scope, because this field is nearly entirely
orthogonal to the attacks we consider. The attacks we consider instead focus on targeting safety and
driving comfort applications. In the broadest sense, this means that message and sensor manipulation
attacks are those of primary interest to our work.

For the papers written in the context of this thesis, the attacker model has evolved slightly over
time, and thus the attacks we include are distinct for each work. For example, in the specific case of
platooning we also consider jamming attacks, as in the time-critical CACC application, such attacks are
particularly effective. Similarly, for large-scale analysis we require different attack types: these attacks
are discussed in the remainder of this section. We specifically point out that for large-scale analysis, we
did not choose the best possible attacks, but rather a broad set of attacks that is deployed independently
in a significant fraction of vehicles. In the real world, this scenario is much more likely than a targeted
attack on a specific vehicle: a vulnerability for one manufacturer likely affects a significant part of all
vehicles. We expect that the exploitation of such a vulnerability would lead, in the worst case, to an
attack that aims to cause wide-spread disruption through relatively simple principles. This is the attack
class on top of which we build the VeReMi dataset, which will be described in detail in Section 8.1; here
we focus on the attacks specifically.

7.3.1 Attacker Model for large-scale C-ITS

We implemented a set of attacks associated with position falsification, the type of attack that is most well-
studied in this field, and for which many mechanisms have been designed [170]. Rather than implement a
broad set of complex attacks, we focused on this specific attack to show the efficacy of our approach. The
attackers we implement within this class, also shown in 7.3, are the constant attacker, the constant offset
attacker, the random attacker, the random offset attacker, and the eventual stop attacker. The constant
attacker transmits a fixed, pre-configured position; the constant offset attacker transmits a fixed, pre-
configured offset added to their actual position; the random attacker sends a random position from the
simulation area; the random offset attacker sends a random position in a preconfigured rectangle around
the vehicle; the eventual stop attacker behaves normally for some time, and then attacks by transmitting
the current position repeatedly (i.e., as if it had stopped). The random attacks (4 and 8) take a new
random sample for every message. The parameters for our attacks are shown in Table 7.3; the numbers
are based on previous work [141]. The corresponding attack implementations are used to generate a
dataset, which is discussed in more detail in Chapter 8.

7.3.2 Attacker Model for CACC

In this section, we describe our attacker model, which covers attacks proposed in previous work [123,
127, 150], as well as elements from the area of misbehavior detection [141] and attacks on sensors [135].
In particular, we are interested in how realistic the attacks proposed in the literature are, when consid-
ering currently standardized security mechanisms. Standardized security mechanisms include the use of
pseudonymous certificates to protect driver privacy, the corresponding private keys of which are stored
in a hardware security module (HSM), which is somewhat protected against tampering. The core of our
attacker model is that an attacker may gain control over a vehicle, and thus over legitimate key material.
This can happen either through software compromise (e.g., malware spread through applications running
on the entertainment system), by physical manipulation of the vehicle, or through key extraction from
an old HSM. However, unlike traditional network attacker models, the attacker additionally must obey
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the laws of physics that are observable by any network participant (e.g., an attacker is not omnipresent
throughout the network).

For CACC specifically, we assume the software and protocol implementations are suitable, i.e., the
attacker cannot find an exploit here, and must obey the protocol. In other words, we restrict the target
of the attack to the platooning application, and assume other mechanisms are in place to filter out invalid
or improperly formatted messages. In our model, the attackers’ primary goal is to cause a crash within
the platoon, with the secondary goal of destabilizing it. We assume the attacker is already part of the
platoon, a position from which the attacks can do the most damage. However, as the literature points
out [127], if the attacker controls the leader vehicle, they have complete control over the platoon, and
therefore attacks should be performed by a non-leader vehicle. We follow this argument and also assume
attacks are executed by a follower in order to study the potential impact of attacks. Another argument
for this is that leader vehicles can be placed under additional scrutiny and replaced if necessary, while
followers are more difficult to replace if they are non-cooperative. For example, if the platoon detects
that the leader misbehaves, the vehicles can decide to leave the platoon and join a new one using the
associated protocols for platoon management [121].

Jamming

Denial of service (DoS) attacks include a variety of jamming attacks (regular and reactive), which are
the most popular variant of this attack within vehicular networks. This also includes various attacks
on higher layers that influence reception (e.g., violating the MAC protocol, causing others to wait).
Some authors [123] also suggest a DoS attack may be launched on the network layer, in order to disrupt
communication by overloading the hardware security module (HSM). This leads to a form of cryptographic
packet loss, i.e., packet loss caused because messages cannot be verified, or cannot be verified in time [91].
In this work, we consider all of these attacks to have the same effect, i.e., that messages will no longer
arrive, and we refer to it as jamming. This generalizes the attack compared to the related work [150],
where the authors considered reactive jamming.

V2X Data Injection

The second class of attacks on CACC that we identify is V2X Data Injection, which generalizes a variety
of different attacks discussed in related work [123, 127]. Any attack that requires the attacker (or a
vehicle compromised by the attacker) to send modified packets falls into this category; it is particularly
interesting for this thesis because these types of attacks may be feasible to mitigate through misbehavior
detection. The specific implementation of this attack is usually dependent on the type of data exchanged
by the controller, and thus the corresponding impact is different for every controller. Similarly, the goal
of an attacker is significant for the implementation, and sometimes used as a distinguishing factor in the
literature (this includes the reduced headway attack, the collision induction attack and the misreporting
attack, among others). However, these goals can often be achieved through one of the other classes of
attacks (e.g., collision induction is possible through jamming), and thus we avoid this terminology.

Spoofing and replay attacks on the V2X messages can also be considered examples of this class, but
these are considered mostly solved in the vehicular networking security community. In vehicular networks,
where GPS is often assumed to be practically ubiquitous, replay attacks can be protected against using
(close to) synchronized clocks. For this work, we assume that GPS spoofing is out of scope, since this
type of attack is completely separate from the network, and such an attack would affect all vehicles in
the vicinity in the same way. There are detection mechanisms available for this attack [147], and future
global navigation satellite systems are designed to have cryptographically protected signals, greatly
increasing the difficulty of spoofing attacks. Similarly, because cryptographic keys are authenticated
through pseudonymous certificates, and messages are protected by digital signatures, spoofing attacks
that cause the receiver to misinterpret the origin of the message are not possible. This also applies to
message falsification attacks (i.e., attacks that manipulate messages of other vehicles), for which digital
signatures are an adequate countermeasure. However, it is possible to use multiple certificates to simulate
more than one vehicle – this is referred to as a Sybil attack (as originally introduced by Douceur [9]).
Whether this attack is feasible depends on how easy it is for the attacker to obtain multiple pseudonymous
certificates that can be used simultaneously.
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Sensor Manipulation

The third and final class of attacks is sensor manipulation, which constitutes any attack that causes
the internal network of the vehicle to report incorrect information to the controller. An attacker could
have access to the internal network of the vehicle and transmit false data here, causing the vehicle to
react incorrectly (or even destabilize the platoon through the controller attack [126]). Although this
could also be done in software, i.e., manipulating memory before the controller processes the inputs,
attacks on the internal network are considered to be more interesting, because misbehavior detection
is a potential countermeasure. Software attacks, on the other hand, are difficult to prevent through
misbehavior detection, as the detection system will likely also be compromised in such a setting.

Another variant of sensor manipulation positions the attacker outside of the target vehicle: instead
of attacking the network, the attacker uses their sensors and other tools to blind the sensors of the target
vehicle, or cause them to behave in a certain way. Researchers have shown that both LIDAR and cameras
are vulnerable to such attacks [135], and the effect of such an attack is very similar to the other type
of sensor manipulation attack (i.e., the controller sees invalid inputs). The only distinction is where the
attacker is located, which influences the cost of such an attack, but the expected results for the platoon
behavior are similar, and thus for the study of attacks we place these attacks in the same category.

7.4 Attack analysis on CACC

In this section, we study cooperative adaptive cruise control (CACC), one of the most promising C-
ITS applications, aimed at increasing road efficiency through partially autonomous driving. CACC is
essentially an extension of existing cruise control (CC) and adaptive cruise control (ACC) technologies,
both of which are designed to allow the driver to maintain constant speed while driving. In the case of
ACC, vehicular sensors, such as RADAR, LIDAR and cameras, are used to measure the distance to the
preceding vehicle, in order to automatically respond to changes in its driving behavior. CACC extends
this concept by allowing vehicles to communicate and create a platoon, consisting of a leader vehicle and
multiple followers, as shown in Figure 7.3. There are many different controller implementations in the
literature that enable this behavior [143] since the proposal of CACC in the 90s. It has been shown
that CACC can be more efficient than ACC, in terms of energy usage and road utilization. It has also
been shown that even a constant spacing between vehicles (i.e., independent of platoon speed) can be
theoretically achieved, whereas it has been shown that ACC alone cannot achieve this goal [94].

…

attacker leadervictims

i+1 i A 0
v0, a0…

di
aA = -30 m/s2

Figure 7.3: This figure shows a platoon with a leader and several followers: in our work, the red vehicle
is the attacker, and the platoon length is 8. The attacker transmits a malicious beacon with a false
acceleration of −30m/s2.

Existing work shows that attacks can impact safety (i.e., potentially cause accidents), but lack a rig-
orous analysis and a framework within which such attacks and the resilience of the respective controllers
can be analyzed. In this attack analysis, we lay the groundwork for such an evaluation framework: we
implement several attacks and provide a concrete quantification to measure the impact of an attack.
Going beyond simply finding whether an accident occurs or not, we analyze the significance of such
an attack (in terms of the ∆v of the accident) and quantify how the stability of an individual platoon
is affected even if no accident occurs. We present results for three existing controllers implemented in
Plexe [122], a state of the art simulation toolkit based on Veins, which simulates both controllers and net-
work communication. Because we use this extensible platooning simulator as a basis for our evaluation,
our work can easily be extended with new controllers. Similarly, our attack implementation can easily
be extended to study the impact of more attacks. We publish the source code, data analysis scripts, and
recorded data in order to stimulate further research in this area.
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7.4.1 Related Work on Platooning Security

We distinguish two areas of related work: controllers, which implement the functionality that CACC
and ACC offer, and existing studies on misbehavior in platooning and similar settings.

Controllers

Platoons are vehicles driving in a group, attempting to keep a minimal but still safe distance between
the vehicles within the group. This can be achieved using ACC and CACC; the main reason for using
CACC is that the safe distance can be much smaller. In both settings, a platoon normally consists of
a single leader and a set of followers, together referred to as the platoon (or sometimes string). The
set of followers can be dynamic, although this usually requires some kind of join and leave procedures.
Each vehicle implements an upper controller that determines the desired acceleration, which is used to
configure the vehicles’ engine and brake controller. In this work we focus on the upper controller (i.e.,
setting the desired acceleration) exclusively, since this is the controller that an attacker can easily reach
(either through communication or through attacks on sensors).

There is a broad scope of literature from the control theory and engineering side covering a variety of
different controllers [143]. This literature typically introduces two stability metrics: local stability and
string stability. Here, local stability refers to a vehicles’ distance to the vehicle ahead of it, while string
stability is a property of the platoon that determines how spacing errors propagate through the platoon.
A platoon is considered string stable when the ∞-norm of the transfer function is less than or equal to
1 (||Ĥ(s)||∞ ≤ 1) [94], which basically means that the platoon will eventually converge to a stable state
if the leader keeps a specific velocity perfectly. Maintaining the distance to the next vehicle can done by
keeping a fixed distance (i.e., meters) or by maintaining a speed-dependent headway time (i.e., seconds),
referred to as constant spacing and constant-time spacing. Earlier work has shown that non-cooperative
methods (i.e., ACC) cannot achieve string stability in a constant spacing policy [94].

In this work we focus on controllers implemented by Segata et al. [122] in Plexe, which includes
a constant spacing controller, a controller with graceful degradation and a consensus controller. The
constant spacing controller is taken from Rajamani [94] and keeps a fixed distance based on the measured
distance and the received speed and acceleration of the preceding vehicle and the leader vehicle. The
controller by Ploeg et al. [107] is designed to enable graceful degradation on network errors: their degraded
CACC controller predicts the acceleration of the preceding vehicle if this information is not received. The
idea is that this degraded controller outperforms ACC, and can thus be used to bridge communication
gaps; this is particularly interesting for jamming attacks. The last controller is a consensus algorithm
by di Bernardo et al. [124], which uses the position, speed, and acceleration information of all vehicles
in the platoon. This controller has a larger spacing, but aims to maintain stability bidirectionally (i.e.,
vehicles also adapt their behavior to that of vehicles behind them); this is particularly interesting with
respect to data injection attacks.

Existing Attacks

Attacks on CACC have typically been studied from two different perspectives, mostly working in parallel.
Security research in vehicular networks has already suggested new types of attacks for the overall network
in the previous decade [24]. More recent work has concentrated on misbehavior detection [141] and data
injection attacks, which are uniquely suitable for vehicular networks and other cyber-physical systems.
Platooning is one of the motivating examples for these researchers. On the other hand, authors from
the control theory side have gained an understanding of potential security concerns, and have started
developing attack-resilient control algorithms. In terms of attacks, some authors have also investigated
how to exploit knowledge of the controller to show that attacks causing instability are possible.

Alipour-Fanid et al. [150] discussed platoon behavior under jamming. In their attack scenario, the
jammer is a drone flying above the platoon, aiming to use its limited power to disrupt the platoon from
above. Jamming is thus done reactively (i.e., with success rate < 100%) to conserve power, although
power consumption is not considered further. Their work shows that their ACC controller is string stable
at 2.2 seconds headway distance, while CACC under the influence of their reactive jammer is string stable
at 1.7 seconds headway distance. Additionally, they show the attack works best when the attacker is
located near the first vehicle in the platoon.
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Amoozadeh et al. [123] discuss a two-level controller model and describe a variety of attacks, including
application and network layer attacks, as well as other issues such as sensor tampering and privacy issues.
They present a result of a message falsification attack, which in their setting is a vehicle external to the
platoon that falsifies all beacons; the result of the attack is platoon instability (i.e., the platoon does
not converge back to a stable state). They also explain that such an attack is most effective when
acceleration changes occur. Similar results are presented for a jamming attack – here, the authors’
controller downgrades to ACC automatically. In our work, we aim to show that such a downgrade is not
necessarily sufficient, depending on how system parameters are chosen.

DeBruhl et al. [127] also use a two component controller, consisting of a PD feedback controller
(radar-based) to keep distance and a feedforward controller (communication-based), whose outputs are
added together to form the desired acceleration that is provided to the vehicle drivetrain. This controller
has been shown to be string-stable in real networked platoons, and DeBruhl et al. examine its behavior
under various attack strategies, including a collision induction attack. The authors continue to develop
an error calculation and detection algorithm, which essentially estimates the expected behavior of the
vehicle in front and switches to ACC if this vehicle appears to behave differently than it claims to.

Outside of the context of communication, but also relevant to secure and safe platooning, is the work
from the research group of Gerdes et al. [101] and Dadras et al. [126]. These authors looked at ACC-based
platoons, and examined adversarial behavior within such a platoon, where the attacker systematically
disrupts the distributed control algorithm using another algorithm that manipulates control input of their
own vehicle to achieve their goal. In the first work, the authors show that for a given PID controller,
they can cause significantly increased energy consumption in neighboring vehicles; as reduced energy
consumption is one of the main drivers of CACC research, this impact is significant. The second work
shows that for a PD controller, the attacker can cause the platoon to be asymptotically unstable, i.e.,
destabilize and eventually dissolve the platoon.

As mentioned, a rigorous and repeatable analysis of attacks across multiple controllers has not yet
been performed. In our analysis, we provide the ground work for such an analysis, comparing different
controllers and different attacks. As expected, we notice that different attacks affect different controllers,
suggesting that there is indeed a need for more rigorous comparisons between controllers.

7.4.2 Simulation Setup

We use Plexe (version 2.0) [122], which is a simulation toolkit based on VEINS, as basis for our analysis
due to its flexibility in implementing control algorithms and accurate simulation of network behavior.
Plexe also extends SUMO, which provides realistic microsimulations of physical vehicles; it extends
this toolkit with various controllers: a constant spacing controller (CACC) [94], a loss-tolerant con-
troller (Ploeg) [107] and a consensus controller [124]. Note that Plexe does not implement the complete
degraded CACC mode discussed in the original paper, due to limited sensing capabilities. For our imple-
mentation, we leave Plexe mostly unchanged, and only extend it to include our attacks. We implement
four attacks: one jamming attack and three data injection attacks.

Our jamming attack is designed to analyze the maximum possible impact of an attack, and is therefore
implemented by locally dropping received messages after the attack starts. This simulates any type of
denial of service, including cryptographic packet loss and various jamming strategies, and provides an
upper bound on the attack success, although it may overestimate it in some cases. The alternative would
be to implement a specific attack (e.g., as done by Alipour-Fanid et al. [150]), but this approach is not
as generalizable as ours.

Our data injection attacks are all implemented by exchanging some data with false data in the message
an attacker would send according to the normal control algorithm. We analyze three different types:
injecting false positions, false speeds or false acceleration values. There are multiple ways to implement
these attacks; in our case, we set the attackers’ value to a constant value for speed and acceleration,
which greatly simplifies the interpretation of the results. In addition, we again aim to provide an upper
bound on the attack effectiveness. For position falsification, we provide a position error that increases
linearly over time, and is added to the vehicles’ current position for each beacon.

The simulation scenario we analyze is a standard scenario from Plexe, which was used by the au-
thors to analyze platoon behavior: the sinusoidal scenario. This scenario initializes the platoon and
then provides the leader with a specific acceleration profile that leads to a sinusoidal speed graph. By
performing attacks at different points in time, we can use this scenario to approximate the impact of
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Table 7.4: Excerpt of simulation parameters: full parameters available in the data and source code
repositories: https://osf.io/fr7h5/.

transmit power 100mW
sensitivity -94dBm

platoon length 8
attacker ID 3
controllers CACC, Ploeg, Consensus

CACC spacing 5, 7, 9, 11, 13, 20 m
target speed 50, 80, 100, 120, 150 km/h

attack: speed value -50, 0, 50, 100, 150 m/s
attack: accel value -30, -10, 0, 10, 30 m/s2

attack: position shift 3, 5, 7, 9, 11 m/s

attacks on real behavior. The significant simulation parameters can be found in Table 7.4; the complete
configuration file and code is available on Github5. Because of the way Plexe is implemented, simulating
chain collisions reliably was not possible, so we collected information about the first collision only.

7.4.3 Results

This section presents the results of our attack experiments, and shows how we used our metrics to gain
insight into the effectiveness of different attacks, as well as the resilience of the existing CACC algorithms.
The data on which these results are based, are also published on Github6, although they can also be
re-generated using the source code and configuration mentioned above.

Jamming

We first discuss the results of our jamming attack, which are shown in Figure 7.4. This figure includes
both successful attacks (i.e., crashes, marked in red) and stability impact (i.e., no crash, marked in blue),
as well as the corresponding impact (see Section 7.2.4). The figure shows aggregated values over five
runs. In all cases, the impact of the attack remained similar (i.e. all five runs resulted in collisions
or all five runs did not result in collisions). We simulated this for different target speeds and different
jamming times: the target speed is the intended average speed of the platoon (i.e., the average speed
of the leader vehicle), while the jamming time is the time at which jamming starts. The jamming time
directly corresponds to the range in which acceleration of the leader vehicle is positive; since the leader
data is disseminated throughout the platoon, the attacker can use this acceleration profile to choose the
time of attack. Based on the speed profile generated from Plexe’s standard configuration, we determined
that the positive acceleration lies between 30 and 32.5 seconds of simulation time (since the behavior is
sinusoidal, this pattern repeats every 5 seconds).

As can be seen in the figure, the target speed has no impact on the effectiveness of the attack on
CACC. However, the attacks are more successful with higher velocities when Ploeg or Consensus are
used as the spacing of these algorithms depends on the platoon target speed. We can therefore conclude,
that spacing has a strong influence on attack effectiveness. On the other hand, attack effectiveness is
not directly influenced by the target velocity. In general, with more spacing, attack impact decreases.
The figure shows that this is not always true (e.g. CACC-13 vs. CACC-20 at 32s simulation time). This
is due to the fact that with CACC-13 and lower, the attack occurs between the attacker (car 3) and
the subsequent car 4. With CACC-20, car 4 can avoid colliding with the attacker, however, car 5 does
collide with car 4.

Position Injection

The next step in our analysis covers position falsification attacks, often cited as one of the most significant
types of data injection attacks on vehicular networks. In our model, the false position is a shift of the
attackers’ real position that increases over time. It turns out that this attack is completely ineffective

5https://github.com/vs-uulm/vnc2017-CACC-code
6https://github.com/vs-uulm/vnc2017-CACC-data
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tudes. The horizontal axis shows different controllers (bottom) and different platoon target speeds (top).
The points with blue background were not associated with crashes; for these points, the maximum
observed instability is plotted. For crashes, the ∆v of first two crashing vehicles is shown.

against the Ploeg and constant spacing controllers – it only causes crashes when the consensus controller
is used. However, we can furthermore see that the spacing error of the Ploeg controller increases signif-
icantly with the leader target speed. This is because the consensus controller is the only one that uses
received position information directly. Somewhat surprisingly, the impact of this attack on the consen-
sus controller depends only on the value transmitted by the attacker, and not significantly on the target
speed with which the leader (and thus the platoon) is moving. The full results are shown in Figure 7.5:
for each shift parameter (mark and color of the scatter plot), with different leader target speeds (top,
left to right), the graph includes the results for four different controller configurations (bottom, left to
right). The impact speed of successful attacks (white background) varies from 2 to 9 m/s, while the
maximum spacing error (gray background) is unaffected by the position falsification. This means that
all attacks that have any effect lead to an accident.

Speed Injection

Our next attack was manipulating the speed transmitted by the attacker. Here, we continuously output
the same value regardless of platoon or controller behavior, which causes the error between the attacker’s
value and actual value to vary from 10 to −10 km/h if it falsifies the platoon target speed. The result
of our analysis, displayed in Figure 7.6, shows that speed injection is successful against constant spacing
CACC only, where the most significant crashes happen at lower speeds; the attacker claims to accelerate,
but actually does not. When the attacker claims negative speeds (e.g., −50) the result is a high position
error. The Ploeg controller shows the same behavior as before (i.e., it is not affected by the attack), and
here the consensus controller is also unaffected, although the spacing error is much higher. Due to a
constant falsified speed, the attacker does not achieve success in the constant value matching the leaders’
speed; we expect this will change if the leader behavior is less predictable.

Acceleration Injection

The final attack we performed is manipulation of the transmitted acceleration. Here, we also chose a
relatively extreme scope, in order to discover the maximum potential of these attacks (−30,−10, 0, 10, 30
m/s2). The resulting statistics are shown in Figure 7.7. As expected, this attack affects all controllers,
because acceleration is used in all the control algorithms. However, the effect is widely different per
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Figure 7.6: Attacking with false speeds. The different symbols represent different attack magnitudes.
The horizontal axis shows different controllers (bottom) and different platoon target speeds (top). The
points with blue background were not associated with crashes; for these points, the maximum observed
instability is plotted. For crashes, the ∆v of first two crashing vehicles is shown.

controller: the consensus controller can tolerate these large errors in acceleration information (although
the maximum spacing error increases slightly), while the others fail almost completely. This is likely
due to the fact that the consensus controller is the only bi-directionally coupled controller (or more
precisely, each vehicle considers all others in its control algorithm). Similar to the speed injection attack,
injecting false acceleration data causes attack impact dependent on the injected value; the attack impact
is significant for positive acceleration values. However, here the impact of false negative acceleration is
also significant — however, at some point, the distance sensor notices that the distance is too large, and
it resets to ACC behavior.

7.5 Discussion

Our results show that the CACC and consensus controllers are unreliable when subject to effective denial
of service attacks, and that the impact of injection is also significant for any data that is used in the
controller directly. This confirms earlier results on individual jamming and injection experiments, and
shows that these results also hold when simulation parameters are changed. Beyond this, our results
show that the window of opportunity for the attacker to jam or transmit false information is broad, i.e.,
the attacker does not need to hit precisely the correct timing for the attack to work. Our results can
also be used as a first step for an attacker to increase attack effectiveness, which enables more a rigorous
analysis of more resilient control algorithms.

Overall, we can conclude that the Ploeg controller deals well with jamming even considering that this
controller was only intended for intermittent, unreliable channels, and not for complete failure. However,
we still managed to cause some accidents even with this algorithm, suggesting that an eventual complete
fallback to ACC may be advisable. The consensus controller behaves differently, and only fails with a
later starting point when jamming — future work could more thoroughly investigate the cause of this
behavior. Finally, we conclude that the constant spacing controller is completely unsuitable for unreliable
communication; the window of opportunity within which a crash can be triggered is at least 2 seconds.

For data injection attacks, the actual value transmitted by the attacker had an important influence
over the attack impact, but the target speed of the leader did not matter much in comparison. We
expected our attacks to increase in impact as the overall platoon speed increases, because we expected
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the controllers to react more quickly in those scenarios. Although this is the case for some position errors,
the crash impact remains relatively consistent for the CACC controller. For the Ploeg controller, the
impact is dependent on the speed, but this dependence is mainly due to the speed-dependent gap that
should occur between vehicles. The one exception to all these observations is the consensus controller,
which is surprisingly resilient against attacks, showing no impact from speed and acceleration falsification.
However, the impact of position shift on this controller is significant. Nevertheless, this suggests that the
consensus controller might be a good starting point for building a resilient controller, despite its relative
ineffectiveness, illustrated by a higher overall position error.

Our results are likely to extend to similar scenarios; the CACC and Ploeg controllers both rely only
on the leader and the preceding vehicle, so any platoon long enough to contain the crashing vehicle is
affected by potential crashes. It is unclear how well the results transfer for the consensus controller,
since its intended behavior is quite different from the other two controllers, considering all the vehicles
in the platoon for the control of each vehicle. However, the overall methodology we applied here is not
constrained to the scenario — the tools we provide can easily be used to further tune the parameters of
the controllers for increased safety, or the attackers’ parameters to improve attack effectiveness.

7.5.1 Concluding the Attack Analysis

In this attack analysis, we have discussed a more holistic attacker model, implemented several attacks and
tested their impact on existing controllers using our proposed analysis methodology. Overall, the results
show not only that controllers are vulnerable to attack, but that there are significant differences between
controllers in terms of how they are affected by attacks. The research community should critically
discuss the limitations of CACC under the influence of these attacks. Work should therefore focus also
on prevention, through the design of resilient controllers on the one hand, and effective detection and
revocation mechanisms on the other.

To further improve false data injection attacks, one could look at how other types of controllers
behave, or study the effectiveness of simultaneously falsifying multiple fields in the beacon. The latter
is particularly relevant, because it circumvents many typical misbehavior detection mechanisms (which
could detect most of the attacks we have described with reasonable accuracy, in part due to the values
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we chose). An alternative route that has not yet been studied very well is the injection of false data into
external sensors. Some research has shown that camera and LIDAR sensors can be tricked easily in a lab
environment [135]. Once Plexe has been extended to include some sensor error models, experimenting
with these attacks and combining them with false data injection will likely be an interesting path. Even
though attacks on sensors would rely on line-of-sight and additional equipment (i.e., it cannot be done
by manipulating a vehicle with malware), we have also found that some injection attacks cause crashes
between vehicles further behind the attacker.

For the development of future control algorithms, we suggest that authors consider a fallback mecha-
nism similar to the Ploeg controller. However, we suggest that this eventually downgrades from degraded
CACC to pure ACC, because the error in the estimated acceleration will increase over time if a jamming
attack is maintained long enough. To improve reliability, using all available inputs may be a feasible
approach to reduce the impact of attacks (e.g., as partially demonstrated by the consensus controller),
especially because common controllers typically only use leader and preceding vehicle information. This
may not increase overall security, but will make it more difficult to successfully fine-tune attacks and
achieve a desired impact. Should the information show inconsistencies, a fallback mechanism could again
be considered; here the challenge is ensuring that the entire platoon mutually decides on performing a
fallback, to avoid a heterogeneous controller environment.

The attacks discussed in this section may be detected with relative ease using plausibility checks;
however, the main aim of this analysis was to show how attack impact may be maximized. Future
work in this specific area may look at the maximum tolerance of the attacks we designed; however, our
currently proposed metrics are bound to the behavior of the leader. The next step is then to decide
how to use this information, apart from invalidating the vehicle in the SCMS [168], preventing damage
from ongoing attacks is also a goal. If using a controller with graceful degradation (similar to Ploeg),
the detection may trigger this functionality: when combined with effective revocation, this will ensure
that temporarily degraded service is the best possible attack. An interesting side aspect is that not all
detection algorithms are compatible with platooning, because the corresponding behavior is different:
it may thus be a feasible path to design specialized misbehavior detection mechanisms for the CACC
scenario specifically.

For the remainder of this thesis, we aim at an analysis of detection performance that is not dependent
on a specific attack. Although it may be easy to design detection mechanisms for these specific attacks,
the likely more feasible approach is to build a controller that is more resilient to faults. This is because a
detector that models the behavior (i.e., positions over time) of a platoon is necessarily an approximation
of the controller’s intended behavior. Although cross-validation between received V2X data and objects
observed through sensors is in principle a way to detect potential attacks, we do not have the tools to
evaluate such a system. This is because neither Plexe, nor any other open-source simulation toolkit that
we are aware of, is capable of simulating realistic sensing behavior. Any reasonable detection mechanism
that we are aware of that could help in these types of scenarios, particularly against realistic attacks
(e.g., adaptations to existing work [75]) requires some kind of sensing information. Therefore, we focus
instead on the second part of the evaluation foreseen by our methodology, which is the effect of deploying
misbehavior detection in widely varying scenarios. This is important, since misbehavior detection should
be a type of system that is always active, and evaluating small scenarios increases the risk of bias in the
experimental design. This may in turn imply that the results do not generalize, as we found was the
case with the overlapping position detector (see Section 6.1.4).
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Chapter 8

Evaluation of Data-centric Detectors

In this chapter, we discuss the evaluation of individual data-centric detectors, which are used in the next
chapter to assess fusion performance. One major contribution that also appears in this chapter is the
VeReMi dataset, which is a public dataset designed for the evaluation of data-centric detectors. As far
as we are aware, this dataset is the first of its kind (in fact, the first publicly available evaluation dataset
for misbehavior detection in this field in general). We also make contributions to rigorous evaluation of
detectors, as introduced in Chapter 7. Parts of this chapter have previously been published [172].

8.1 VeReMi Evaluation Dataset

The first contribution discussed in this chapter is a dataset intended to provide a common baseline for
misbehavior detection evaluation. Previous studies have always relied on individually designed simulation
studies: although this has the advantage of customizable attacks and flexibility with respect to the
specifics of the scenario, it makes it difficult to compare mechanisms with each other. The purpose of
our dataset is to provide an initial baseline with which detection mechanisms can be compared. This
reduces the time required for researchers to perform high-quality simulation studies, and it makes it easier
for readers to compare the results of different papers. We acknowledge that no dataset can completely
replace a detailed analysis of a detection mechanism; however, the current state of the art, where a
comparison with any other scheme requires a time-intensive and error-prone re-implementation of every
scheme, is unacceptable. Our dataset will provide the first step towards a comprehensive evaluation
methodology for this field.

The dataset has advantages beyond being publicly available: it can easily be reproduced using the
publicly available source code, and is therefore also extensible. This means that new attacks can be
introduced into the dataset in a consistent way, without error-prone manual editing of the dataset.
However, this advantage is very closely tied to the fact that VeReMi is based on simulative evaluations.
We discuss the advantages and disadvantages of this approach in this section.

The dataset we introduce is based on our evaluation workflow, as previously discussed in Section 4.4.2;
recall that this workflow in essence performs off-line classification for every vehicle, and then assesses the
overall performance of a set of detectors. This process is illustrated again in Figure 8.1: in this chapter,
we describe VeReMi and the associated components, highlighted in bold in this figure.

VeReMi essentially consists of message logs for every vehicle in the simulation and a ground truth file
that specifies the attacker’s behavior. Local information from the vehicle is included through messages
of a different type (representing periodic messages from a GPS module in the vehicle). Any detector can
thus read the sequence of messages and determine the reliability of every message (or a subset thereof).
Our dataset and the source code used to generate it1 is publicly available, and consists of 225 individual
simulations, with 5 different attackers, 3 different attacker densities, 3 different traffic densities, and 5
repetitions for each parameter set (with different random seeds). A detailed discussion of these aspects
and the choices made in the generation process is provided below. Note that anyone can reproduce and
extend our dataset in a consistent way using the provided source code, enabling anyone to extend the
evaluation of any detector that was studied with VeReMi.

1https://veremi-dataset.github.io/
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Figure 8.1: VeReMi’s workflow – the detectors on the left side of the graphic can simply be replaced
by new detectors; the simulation can be replaced by new simulations, resulting in an updated version of
VeReMi.

8.1.1 Scenario Selection

The purpose of our dataset is to provide a holistic basis for evaluation of misbehavior detection mech-
anisms, rather than a specific traffic situation that works well or poorly for a specific mechanism. This
is aimed to reduce unintentional selection bias based on properties of the mechanism and the scenario,
sacrificing the level of detail with which individual scenarios are studied. The alternative approach that
is often taken is to pick a few specific traffic scenarios to be studied (e.g., congested highways, free-flowing
traffic in a Manhattan grid setting) and analyze these in detail. This provides detailed information on
mechanism behavior, but relies on a lot of manual decision making, making fair comparisons between
mechanisms difficult. We instead focus on how mechanisms behave in a variety of different scenarios.
To this end, we provide a much larger dataset that can be used to assess the overall performance, before
looking at individual scenarios to provide specific improvements for specific detection mechanisms. In
order to achieve this, we selected a representative sample of the entire simulation scenario, based on the
included road types and the associated traffic densities.

Our work is based on the Luxembourg traffic scenario (LuST), originally introduced by Codeca et al. [125],
who aimed to provide a comprehensive scenario for evaluation of VANET applications. Although this
scenario is very suitable for traffic engineering, the simulation cost for the simulation of a city-scale
VANET over multiple hours is prohibitive2. For this reason, reproduction of an entire study performed
by other research groups is quite rare in our community – most papers that reference results from other
articles are follow-up work. This is where our dataset comes in: it provides a simple message stream per
vehicle, making it much easier to reproduce detection studies. Table 8.1 describes some core parameters
of the simulation – more information can be obtained in the OMNeT++ configuration file in our source
code.

We implemented an initial set of attacks associated with position falsification, the type of attack that
is most well-studied in our field (and for which many mechanisms have been designed [170]). Rather
than implement a broad set of attacks, we focused on this specific attack category to show the efficacy
of our approach. Ultimately our goal is to evaluate Maat, and its primary goals include the detection of
different types of attacks through fusion. However, fusion by definition cannot improve performance if the
detectors and attacks are unrelated. For example, if a detector can only detect false positions, an attack
with false vehicle weight would never be detected3. We foresee that other researchers can contribute
new attack implementations and corresponding datasets to the central VeReMi repository, which we will
maintain. By focusing on a specific set of attacks in this work, we show how VeReMi is useful for other
researchers and provide an initial starting point for the community. Since the data is published as a list
of message logs, which include speed, claimed transmission time, reception time, position, and received
signal strength indication (RSSI) for each receiver, it is easy to take a newer version of VeReMi and
run it through detectors that have already been published. This enables researchers to directly compare
their detector against existing ones, and any new attack against a variety of detectors (as long as their

2For illustration purposes; our 100 second excerpt of the scenario at high densities contains hundreds of vehicles and
runs for a few hours – a significant part of this cost is the realistic simulation of signals reflecting off the ground and various
buildings.

3To be precise, some detections may occur due to the detector issuing false positives. However, in this situation,
attackers and benign vehicles will be statistically indistinguishable from each other.
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Table 8.1: Simulation Parameters

Parameter Value Notes
Mobility SUMO LuST (DUA static) [125]
Simulation start (3,5,7)h controls density
Simulation duration 100s
Attacker probability (0.1, 0.2, 0.3) attacker with this probability
Simulation Area 2300,5400-6300,6300 various road types
Signal interference model Two-Ray Interference VEINS default
Obstacle Shadowing Simple VEINS default
Fading Jakes VEINS default
Shadowing Log-Normal VEINS default
MAC implementation 802.11p VEINS default
Thermal Noise -110dbm VEINS default
Transmit Power 20mW VEINS default
Bit rate 6Mbps VEINS default (best reception)
Sensitivity -89dBm VEINS default
Antenna Model Monopole on roof VEINS default
Beaconing Rate 1Hz VEINS default

source code is published). Our attacks were previously discussed in Section 7.3.1.

8.1.2 Characteristics

The dataset consists of a total of 225 simulation executions, split into three density categories. The
low density (corresponding to a run starting at 3:00) has 35 to 39 vehicles, while the medium density
(a run at 5:00) has between 97 and 108 vehicles, and the high density (7:00) has between 491 and
519 vehicles. Out of these vehicles, a subset is malicious: this decision is made by sampling a uniform
distribution ([0, 1]) and comparing it to the attacker fraction parameter, essentially assigning each vehicle
to be an attacker with that probability. All of the vehicles classified as attacker execute the same attack
algorithm (described in the previous section). Each receiver generates a reception log containing all
periodic position updates generated by SUMO (10Hz) and all received messages (i.e., beacons from
other vehicles). Each of these log entries contains a reception time stamp, the claimed transmission
time, the claimed sender, a simulation-wide unique message ID, a position vector, a speed vector, the
RSSI, a position noise vector and a speed noise vector. In addition, a ground truth file is updated
whenever a message is sent by any vehicle: this file contains the transmission time, sender, attacker type,
message ID, and actual position/speed vectors. The attacker type is set to 0 for legitimate vehicles. The
following describes the dimensions of the VeReMi dataset in terms of messages and reception events per
density.

The number of messages transmitted in the simulations varies between the simulations and densities;
at low densities, 908 to 1144 messages are sent, at medium densities, there are between 3996 and 4489,
and at high densities, there are 20482 to 21878 messages sent. The corresponding reception events are
much more scattered; some vehicles receive 0 messages in these simulations (e.g., if they are not close
to any other vehicles). For low density, a vehicle receives up to 278 reception events (total over all low
density simulations is 277916 events spread over 2820 receivers), while at medium density this number
goes up to 911 reception events (total over all 1815215 spread over 7695 receivers). Finally, for a high
density, a single vehicle processes up to 5468 reception events in the 100 simulation seconds (total over
all simulations over all 37500 vehicles is 37043160), or about 1000 messages per vehicle (10 per second,
i.e., roughly 100 nearby vehicles at a beaconing rate of 1Hz if we ignore lost messages). A graphical
view of reception event frequency is given in the histogram in Figure 8.2.

The scenario also includes a wide variety of traffic behavior, as illustrated in Figure 8.3, which shows
aggregate speed statistics over all runs in a specific density. The statistics were computed by taking
the current local speed vector for every vehicle for every position update (which happens at 10Hz) and
aggregating all these samples. This results in a mean speed of 24.36 m/s for the low density scenario,
with a very large standard deviation of 13.73 m/s; since the median speed is 30 m/s, this suggests that
most of the deviation is due to traffic lights. In the medium density configuration, the median (13.33
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Figure 8.2: Histogram showing the raw number of
reception events in the simulations.

Figure 8.3: Histogram showing distribution of speed
in the simulations.

m/s) and mean (15.06 m/s) drop significantly, although the number of vehicles in the simulation is fairly
low (only about 2.5 times the vehicles compared to a low density); the standard deviation is still very
high (12.34 m/s), indicative of the wide variety of driving behavior. Finally, our high density scenario
drops down further to a mean speed of 12.81 m/s, with a standard deviation of 10.94 m/s, while the
median is 12.81 m/s.

8.1.3 Limitations of VeReMi

Our dataset cannot be fully representative of all possible attacks in VANETs, especially because the
implemented attacks are representative of a specific type of attack. Investigating the effect of multiple
attack types across a single simulation is not possible with this dataset. We argue that our dataset
should be used as a starting point for a more rigorous approach to the evaluation of such systems,
primarily by motivating other researchers to also publish their data. In addition, other researchers can
use this process to find weaknesses in our detection approaches and implement new attacks. Because
these extensions would include the same base scenarios, but with different attacks, a user of the dataset
should specify which attacks were used. The new attack can then be tested in existing detectors, either
to choose new parameters for those detectors or to inspire the design of new detectors. We believe
this interactive process is essential to achieving scientifically meaningful results: existing work nearly
always relies on non-published code in some way, and thus it is very difficult to verify results of others.
This leads to difficulty in replication of results, especially for complex detection systems that have many
moving parts. The purpose of this dataset publication is to alleviate this: authors can make verifiable
and reliable comparisons between their schemes and ours.

Another important limitation of our dataset is that the evaluation workflow, which was previously
discussed in 4.4.2 is fundamentally non-interactive: it is designed for detection, not for response. This
means that some specific misbehavior detection schemes that rely on interactivity or application decisions
based on the detection of an attack (e.g., increasing safety distance in autonomous driving) cannot be
evaluated with our dataset directly. However, for systems that protect specific applications, a comparison
with other schemes always requires custom implementation. The core weakness of our approach is that
we cannot directly evaluate trust over time without major modifications to our workflow, since trust
schemes often do not output decisions for every message.

8.2 Evaluation of Plausibility Detectors

This section shows an application of our dataset and metrics to analyze several data-centric plausibility
detectors, which are detectors that verify a received message against data from local sources only. The
decisions made by these detectors are practically instant (i.e., they do not depend on other data sources),
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Table 8.2: Detector parameters, chosen based on detector design and previous work in Chapter 6.

Detector Parameter Values
ART est. reception range (m) 100, 200, 300, 400, 450, 500, 550, 600, 700, 800
SAW max. appearance distance (m) 25, 100, 200
SSC max. speed deviation (m/s) 2.5, 5, 7.5, 10, 15, 20, 25
DMV min. distance (m) 1, 5, 10, 15, 20, 25

and contrary to trust schemes and consistency mechanisms, does not result in new attack vectors that
can be used for bad mouthing and similar attacks [170]. As plausibility mechanisms are often used as a
basis for trust establishment [30, 33, 35, 82], we focus on these. We implement detectors in our detection
framework Maat4. In this chapter, we compare four detectors: the acceptance range threshold (ART),
the sudden appearance warning (SAW), the simple speed check (SSC), and the distance moved verifier
(DMV). Of these, the ART is the most well-studied, originally introduced by Leinmüller et al. [30] and
later used by others, including Stübing et al. [82] and in our earlier work [141]. It basically uses the
expected reception range as a measure for the plausibility of the position included in incoming single-hop
beacon messages, which are the most important source of information for VANET applications. The
SAW was also introduced by Schmidt et al. [35], and is based on the assumption that vehicles will not
suddenly appear, but rather always approach from a distance; if a message originates close by with an
unknown sender, it is considered malicious. The SSC and DMV were implemented as part of our work on
a detection framework, and both examine whether a new beacon confirms information claimed in an older
beacon. The SSC decides maliciousness based on how the claimed speed relates to the speed implied by
the position and time differences between the current and the previous beacon, and the claimed speed in
the current beacon. If the deviation exceeds a threshold, this detector classifies the message as malicious
(similar to, but much simpler than, a Kalman filter [82]). Finally, the DMV checks whether the vehicle
moved a minimum distance (similar to the way the MDM proposed by Schmidt et al. [35]), and if this
distance is too small, the message is considered malicious.

This selection of mechanisms is made for several reasons: 1) all of these mechanisms are exceedingly
simple, 2) these mechanisms are designed to detect false positions in some sense, but as our analysis will
show, different mechanisms detect different attacks, 3) the mechanisms rely on different data elements
in the packet. Especially the simplicity is important for this discussion, since this allows us to not
only compare the mechanism performance dependent on their respective thresholds, but also showcase
how our metrics and dataset enable a useful and detailed analysis of mechanism behavior. We also
focus on position verification as a specific application, in order to focus on a specific set of attacks, as
discussed previously. Finally, these are the mechanisms for which the source code is available, unlike
other mechanisms we have found in the literature – re-implementing mechanisms can be challenging,
as often the implementation details are missing due to space limitations, and the code is not publicly
available.

8.3 Results: Detection Performance

Here we show the analysis results of our misbehavior detection framework, Maat, executing the detectors
described above with different parameters, as listed in Table 8.2. In this chapter, we focus on the outcomes
of individual detection mechanisms: for a real-world deployment of Maat, this evaluation process is the
first step, and will inform the work in the next chapter, where we study fusion. These results can be used
to configure initial thresholds for each detector. For brevity, we focus on high and low density scenarios
with high numbers of attackers (30%), but the results are consistent with those for the other attacker
fractions. We publish the entire set of figures and the underlying data as additional material5. The 10%
and 20% attacker cases show comparable results for each set of graphs in Figures 8.4 and 8.5; similarly,
the medium density is comparable to the high density (as the application behavior is quite similar, as
illustrated by Figure 8.3).

As our dataset contains five simulation runs per behavior/attacker parameter set, each point in the
graphs represents the mean of five runs, aggregated over vehicles as described previously. The error bars

4https://github.com/vs-uulm/Maat
5https://github.com/vs-uulm/securecomm2018-misbehavior-evaluation
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in these graphs show the sample standard deviation associated with this mean. The colors show the
different detectors, also listed in the legend on the bottom; for black-and-white readers, we point out
that the extremes of the threshold values (indicated with arrows at the extreme ends of each plot) are
unique. Finally, note that the lines in these graphs are for illustrative purposes only – as previously
discussed, interpolation between these points is a non-linear task [16].

Low Density High Density

Figure 8.4: Precision-Recall graphs for low densities (left) and high densities (right) for attackers 1
(constant false position), 2 (constant offset of real position), and 4 (uniform random in simulation area).

8.4 Discussion: Detection Performance

In Figures 8.4 and 8.5, the different attackers are listed from top to bottom as specified in Table 7.3.
Overall, as one might expect, the type of attack is an important distinguishing factor in the effectiveness
of the detection process (i.e., easily detected attacks generally have higher recall). One can observe
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Low Density High Density

Figure 8.5: Precision-Recall graphs for low densities (left) and high densities (right) for attackers 8
(random offset for every message) and 16 (simulating eventual stop).

immediately that the results for the different detectors vary greatly per attack, regardless of density.
However, some detectors’ performance is dependent on the density of the traffic (DMV is notable here).
It can also be seen that the SAW has very poor performance for all attacks except for 16 – this corresponds
to expectations from the detector design. We now focus on a brief discussion of each individual attacker.

For the first attacker, which falsifies position, the results show that in low density settings, all detectors
except SSC very accurately detect the attack. A similar trend can be observed in the high density
scenario; however, note that the ART performs slightly worse at very high thresholds (greater than
500); this conforms with results from our earlier study [141], as discussed in Chapter 6, which used a
different simulation model. With regards to the SSC, which verifies whether the claimed speed in the
current beacon corresponds to the distance moved between two beacons. However, note that this is
not necessarily correlated with an attack: it occurs naturally in the application behavior that vehicles’
speed deviates significantly from the movement, for example when braking for traffic lights. Since no
interpolation is performed by the SSC based on other information (such as sensor measurements) and
the beacon frequency is relatively low, this mechanisms’ performance is overall quite poor.

The second attacker, type 2, adds a fixed vector to its position; this attack is harder to detect for most
mechanisms, and this can be observed by the poor performance in all cases. The very large standard
deviation in the low density case (left) suggests that the success is very dependent on the relative position
of the vehicles; especially for ART, this is exactly what one would expect. This is confirmed by the greatly
reduced deviation observed in increased densities. Since the attacker adds exactly the same value to each
beacon, it is expected that the DMV does not perform at all: indeed, this effect can be observed very well
in the high density graph (precision remains constant at 0.3, the attacker fraction, for all thresholds). A
very similar behavior is shown by the SSC; again, this is expected, since the relative position claimed by
the attacker is the same as the ground truth.

Attacker type 4, which transmits a random position from the simulation area (essentially correspond-
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ing to a broken GPS), is never detected by the DMV (since the probability that two positions near the
same area are chosen is very close to zero). The ART and the SSC have no problems with this attacker,
which is quite easy to detect. It can, however, be observed that low ART thresholds result in a low
precision. The randomness in attacker type 4 causes worse performance than attacker type 1, as could
be expected.

The next attacker, attacker type 8, shows remarkably similar behavior to attacker 2 for the mechanism
(again, confirming previous results [141]). However, due to the randomness in this attacker, the attacker
is somewhat harder to detect for the ART than before, and cannot be detected at all by the DMV. The
SSC, on the other hand, appears to be surprisingly suitable for this attack. From this, we conclude
that fusion has the potential to significantly improve performance, which is in line with our previous
work [141].

Finally, our last attacker (attacker type 16) is different from the previously discussed attacks, in
that it changes the vehicles’ messages in a pattern over time (as opposed to manipulation of individual
messages independently, as done previously). This is noticeable in the very different detection behavior,
in particular of the DMV, since the attacker is essentially converging to a situation where they do not
move at all (which the DMV easily detects). However, ART and SSC behavior is comparable to attackers
8 and 1 – as expected: the attack could be seen as a transition from attacker 8 to attacker 1 over some
time.

In summary, we can conclude that the ART with a high threshold works well against attackers that
transmit erroneous positions (attackers 1 and 4), but has significant difficulties with those that are
designed to confuse applications (attackers 2, 8 and 16). Against these malicious cases, the SSC works
surprisingly well with lower thresholds, but it is subject to very poor performance against attacker 2. The
DMV mechanism works best in dense traffic against attacker 16, and it also does well against attacker
1, but overall its performance is very poor: this mechanism is clearly only suitable to identify very
specific attacks. We also note that the SAW does not outperform any other mechanism in any scenario;
a future study that includes ghost vehicles (similar to for example, [23]) could show some benefit, but the
extremely low precision will require some effort to make this scheme deployable. Finally, note that ART
and SSC appear to out-perform each other depending on the scenario (and the configured threshold):
these are mechanisms we will focus on for our examination of the dispersion.

8.5 Results: Dispersion of Errors

Now that we have reviewed the detection performance in terms of precision-recall (PR), we examine
our new metric based on the Gini index to study how to improve detection performance. Preliminary
analysis has shown that the Gini index is not meaningful for small sample sizes as in our low density
results, since the population is too small to make meaningful statements (because the sample standard
deviation is very large for these results). The data and graphs are available for future analysis, but
we caution against drawing conclusions from these for this reason. We therefore focus on a discussion
of the high density scenario, which contains enough vehicles to allow for a meaningful analysis of the
distribution of error rates. The results are shown in Figure 8.6; as before, each point is the mean of
five runs, and the sample standard deviation is indicated. Recall that in our setup, a Gini index closer
zero means that the distribution of false positive/negative rates over the vehicles is closer to being equal,
without making statements about the actual value.

8.6 Discussion: Dispersion of Errors

In this assessment, we first discuss the false negative dispersion per attacker. This dispersion gives us
information about how different the detection performance is depending on the relative position of the
attacker and the benign receiver.

For the ART, we observe that the dispersion of false negatives with regards to attacker 1 is very high:
this can be explained by the fact that vehicles near the claimed constant false position will not be able
to detect it with this mechanism. A similar effect can be observed for attacker 4, while for the other
attacks, the dispersion only increases when the threshold is very low. This reflects the increasing recall
discussed in the previous section, but remember that the precision also decreases significantly here. The
SSC has a very low dispersion of errors for attacker 2, but unfortunately this is also the attacker against
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Figure 8.6: Gini indices of FPR and FNR for different attackers.

which its precision is very low. Against attacker 8, the SSC outperforms the ART; the dispersion of
errors suggests that this could be a localized effect, meaning that a combination of these mechanisms
is likely to be feasible. For the mechanisms that perform very poorly against certain attackers (SAW
and DMV), the Gini index shows that their poor performance is not easily fixed: the error dispersion is
very close to zero in most cases. The exception is the DMV with regards to attackers 2 and 16: some
performance improvement may be achievable by making changes to this detector. Finally, note that for
attacker 1, the recall of the DMV is very high, while the Gini index for the false negative rate is very
close to zero.

As can be seen in Figure 8.6, the dispersion of false positives for each detector and threshold is the
same in every graph. This confirms that the attack configuration does not affect the false positive rate,
which is the expected result for detectors that are not subject to bad mouthing attacks. One can observe
that the dispersion of false positives for the ART show that for higher thresholds, the number of false
positives is significantly skewed over the population; this reflects the intuition that receiving a message
from up to 700 meters away is unlikely but not impossible; however, for a threshold of 800, the dispersion
is zero. For the SSC, we observe that the threshold is much less relevant to the observed dispersion; this
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suggests that the mechanism would need to be changed more fundamentally to flatten the dispersion. A
notable case is the DMV: this mechanism has a very high Gini index, meaning that errors only affect some
vehicles, and thus is an excellent candidate for fusion with other sources. In this particular setup, where
detector assess the reliability of each message from the same source in isolation from other sources, an
attack cannot lead to more false positives. Another class of attacks, where an attacker aims to convince
a benign vehicle of a false perception of the traffic scenario (e.g., claiming a traffic jam where there is
none, by convincing the target that the average speed is much lower than it actually is), this is not
necessarily the case. If such an attack is successful, this could cause benign vehicles to make false claims
(i.e., misbehave). We refer to this as a data-driven bad mouthing attack, a type of attack commonly
studied in secure in-network aggregation, where it has been suggested that misbehavior detection could
provide benefits [103]. Because our metric studies how benign vehicles incorrectly classify messages as
misbehavior, it could also be used to assess the impact of such attacks.

8.7 Summary

In this chapter, we have introduced a new dataset for misbehavior detection in vehicular networks, called
VeReMi. The purpose of this extensible, publicly available dataset is to provide a basis on which re-
searchers can compare detection results in a wide set of traffic behaviors and attacker implementations.
We have additionally shown the application of this dataset to two existing, well-studied detection mech-
anisms (the ART and the SAW), as well as two simple new detectors (SSC and DMV). We have also
provided our results in terms of precision-recall, as well as our newly introduced Gini metric that enables
the user to determine which detectors can potentially be improved. Using a combination of these metrics
allows developers to have a more holistic view of a detector’s assessment, which is information that can
also be used in many fusion frameworks. VeReMi will enable other researchers to compete with our de-
tectors, and in the next chapter we will use it to study fusion with the detection mechanisms introduced
in this work.
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Chapter 9

Fusion & Local Trust

In the previous chapter, we have seen how detector performance is highly dependent on the type of attack,
and our results have shown that different types of detectors work differently in different scenarios. This
is why Maat uses fusion to combine the outputs of detectors; the goal is to exploit the strengths of
each detector to cancel out the weaknesses of the others. Fusion in Maat is based on subjective logic,
as discussed in Chapter 5. Subjective logic offers a variety of operators for different scenarios; in this
chapter, we include the cumulative belief fusion (CBF), weighted belief fusion (WBF), and consensus
and compromise fusion (CCF) operations. We also introduce subjective logic variants of two baseline
operations, primarily for comparison: the minimum operation (MIN) and the majority operation (MAJ).

The core contribution of this chapter is a study of the interaction between fusion through subjective
logic, the application of transitive trust in detection mechanisms, and the effects of exponential weighted
averaging to compensate for detector errors. We analyze and evaluate several different fusion operations
(see Section 5.2 for an overview of the fusion operations) using the VeReMi dataset [172] introduced in the
previous chapter. In addition, we discuss their applicability of these operations in fusing the outputs of
detectors. Additionally, we evaluate whether incorporating past detector outputs for the recent message
history using an exponential weighted average (EWA) improves detection results.

The results show that WBF is the best choice overall, where fusionability (i.e., trust in detection
mechanisms) controls how close the decisions are to a majority decision (i.e., MAJ). MAJ performance
varies strongly depending on how well-suited detectors are to specific attacks, therefore a trade-off needs
to be made. Our attempts to improve results through the application of an EWA to compensate for
individual detection errors increases recall overall, and for some attacks also increases precision. However,
the increased recall should be taken with a grain of salt, since in the dataset we used for analysis, attacks
are constant; an attacker could exploit an EWA through carefully crafted periodic message injection.

9.1 Comparison to Related Work

Here we briefly revisit the related work already discussed in Chapter 2 to address some specific differences
between Maat and their work in more detail.

Leinmüller & Schmidt et al. [30, 35] have proposed VEBAS, a behavior validation framework that
generates positive and negative ratings from different detectors that validate a specific property of a
message. Positive ratings are generated for behavior that confirms the sender is a real vehicle1, while
negative ratings are generated for behavior that indicates maliciousness. The ratings from the same
detector are combined using an exponential weighted average, and the resulting outputs are combined
by summation. Using summation as the fusion operation works, because all the detectors are designed
and tuned exactly to work together in this setting. Changing the behavior of one detector thus affects
the impact of other detectors on the fused result. The result is then shared with other vehicles as
a recommendation, and recommendations from other vehicles are fused to make final decisions about
messages. However, the authors later point out that final decisions should instead be made based on the
local sum (i.e., the fusion of aged local information), where the trustworthiness threshold is set by an
application [30, 35].

1The authors assume that malicious vehicles do not exist as such, i.e., they assume an attacker extracts key material
and use it outside of a vehicle.
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One of the main disadvantages of VEBAS and related works is that their performance relies on
the correct behavior of all detectors, and the potential impact of errors in some can greatly affect
performance. Attacks that cannot be detected by most detectors vehicles are equipped with are thus
very unlikely to be detected. Essentially the authors are proposing something like a majority decision:
if most detectors accept the message, it is assumed to be legitimate. For example, if an attack affects
the acceleration field of a message, while most detectors focus on position, the attacker message is likely
to be accepted as legitimate. In addition, the exponential weighted averaging and the fact that a lot
of their proposed detectors take a significant amount of time to produce output makes this setup less
suitable for immediate response. In our work, we specifically focus on this problem of fast response, and
ask: what performance can be achieved using only message-level decisions? We also investigate other
fusion operations that can be used for better, more nuanced decision making.

Another significant framework is the work by Stübing et al. [82], whose design targets a specific
application: movement validation. This framework consists of several plausibility checks, similar to
the detectors in VEBAS, followed by an elaborate tracking scheme inspired by safety applications. This
tracking is based on a Kalman filter, which is used to determine the validity of the newly received position
information. The decision is made based on the deviation from the predicted position, which leads to
obvious problems when vehicles perform maneuvers such as overtaking; for this purpose, a maneuver
recognition was added.

One of the most significant disadvantages of the work by Stübing et al. is that their framework was
not designed to integrate new detection mechanisms or payloads. Due to the hierarchical nature of their
design, the framework is very inflexible, and changes to a single detector or connection require changes to
many of the framework components. In addition, even if flexibility would be increased, their hierarchical
design of plausibility requires that all possible legitimate behavior is accepted. False positives in these
checks would cause important messages to be discarded before even being fed into the Kalman filter. In
other words, the false positive rate should be extremely close to zero to avoid classifying many vehicles
as malicious. However, a low false positive rate also necessarily implies that the false negative rate is
higher, since there are significantly more values for the attacker to choose that are accepted by their
framework. In our work, we take a more nuanced view, and examine how fusion of these different checks
can be performed in a way that detects more attacks.

Raya et al. [33] proposed a number of approaches for data-centric trust. The authors describe an
abstract framework, which considers various aspects such as node properties (e.g., node type; is it a police
vehicle or a regular vehicle?), security status and a dynamic trust metric. The dynamic trust metric is
a function that assigns a trust to each node based on its task within the network. The different factors
are combined into trust levels per vehicle, which together with the message are passed to a decision
logic to make the final decision. In this specific paper, Raya et al. [33] investigate various options for
the decision logic. The studied options in their work include majority voting, weighted voting, Bayesian
inference (BI) and Dempster-Shafer theory (DST) as potential candidates. Their discussion points out
that in cases with high uncertainty, Dempster-Shafer (DST) performs better than other methods, while
Bayesian inference is most resilient to false reports (i.e., falsely issued trust between vehicles).

In our work, we also use a decision logic to combine trust from multiple sources; however, we focus
on the point that is not discussed in detail by Raya et al. [33]: trust based on the contents of a message.
Based on their results, we choose subjective logic as the decision logic, which can be regarded as a
more extensive theory that encompasses DST. In their work, the message’s contents are a simple binary
event (i.e., a true or false accident report), while in our setting, we consider each beacon message as
a potentially true or false event, increasing the amount of decisions that are made compared to their
work. In addition, we also have a different application scenario: our goal is to analyze the performance
of immediate message-level decisions, rather than wait until the last possible moment to react, in order
to gather more information. Our goal is to analyze the potential performance associated with such a
filtering system; this information can then be applied to improve the overall system performance in a
trust setting as proposed by Raya et al. [33].

One other area that has recently gained interest throughout the security community is the application
of tools from the area of machine learning. Although we feel that machine learning will likely have its
place in our field in the long term, we remark that the blind application of machine learning techniques
to detect attacks is not a reliable one, as recent research has shown [169]. It is important to at least apply
new attacks as part of the validation of the algorithm, which is currently not common practice in our
field, regardless of whether machine learning is applied [71, 141, 154]. As the publication of results along
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with source code and data set is very uncommon in neither this field, nor that of misbehavior detection,
it is difficult to compare detectors with machine learning approaches. Since the detection performance
of machine learning models is typically bounded by the input data quality and availability, overfitting
might be a significant issue. Therefore, we do not claim that our work performs significantly better than
other systems, but instead show how to tune our framework to improve performance. Machine learning
could then be used to optimize performance in future work.

9.2 Fusion & Trust Revisited

As discussed in Chapter 5, our system applies a combination of trust transitivity, fusion and exponential
weighted averaging in order to decide on the trustworthiness of data based on the received messages.
We briefly revisit the setup: the detectors in Maat perform their detection and output statements of
trustworthiness based on the internal logic of the detector, as evaluated in the previous chapter. In
this chapter, we focus on the remaining parts of the system, in particular the fusionability, fusion and
exponential weighted averaging. This is shown schematically in Figure 9.1 and was previously discussed
in detail in Section 5.5. We briefly revisit these elements in this section.

9.2.1 Fusionability

We also consider a base fusionability parameter that determines how much trust we have in each detector.
This was previously introduced in Section 6.3.3, and we briefly repeat our ideas here. The value for
fusionability is chosen equal for every detector in this study. Since detectors have different confidence
values, a different choice for the base trust for each detector still provides different outputs. To study
the broad effects that high and low trust in detectors has, we choose 0.1, 0.3, 0.5, 0.7, 0.9 as trust values
to analyze. These values were chosen to validate our expectation that very high trust in detectors causes
the operations to approximate a majority decision (i.e., MAJ), and that a very low detector trust causes
them to approximate a minimum (i.e., MIN). This is because the lower the trust in a detector, the higher
the resulting uncertainty that is used for fusion afterwards.

These trust values are converted into opinions by setting the belief to the chosen value v, the disbelief
to 1−v and subsequently computing the uncertainty-maximized opinion. This ensures that the projection
of the opinion is the chosen value. Recall that the fusionability essentially represents the trust in a
detector. To combine this trust with the detector output, trust discounting is applied. In other words,
the fusionability can be seen as a weight that specifies how important the belief or disbelief of the detector
output is. Note that the fusionability could also be determined dynamically to make the system more
adaptive; however, adequately designing such a dynamic system requires information about how this
transitive trust in detectors affects detection performance.

9.2.2 Exponential Weighted Averaging

The purpose of an exponential weighted average, which we apply before fusion (i.e., on the output
previously provided by the detector), is to even out “random” classification errors of a detector. Since it
is commonly taken for granted that the EWA improves performance in related work (see Chapter 2), we
include this behavior in our system as well. In order to apply this properly, we have defined the EWA
for subjective logic with the following equation in Section 5.4.2:

E(ωA
t ) = (1− α) · E(ωA

t−1) + α · E(ωAnew) (9.1)

9.2.3 Fusion Operations

The fusion operations we compare are the cumulative belief fusion (CBF), weighted belief fusion (WBF),
the consensus and compromise fusion (CCF), as well as the minimum (MIN) and the majority (MAJ)
operations. These were previously introduced in Section 5.2. Recall that the CBF works cumulatively
(i.e., detectors are considered independent), while WBF uses confidence-weighting and CCF outputs a
compromise between its inputs. MAJ and MIN represent the majority and minimum trust approach
respectively. The majority decision assumes that all detectors have a similar performance regardless of
the attack or lack there-of. The minimum assumes that all detectors are quite competent at detecting
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Figure 9.1: A world model with a single data item D and a single other vehicle V .

attacks, but they detect different types of attacks, and thus assumes whenever a detector is triggered,
an attack must be occurring.

9.2.4 Summary of Evaluated Components

The work from Chapter 8 has shown how detectors behave when evaluated independently with different
thresholds. In this chapter, we focus on all the surrounding components that Maat adds into the system.
A full discussion of Maat’s complete fusion process was provided in Section 5.5, which also includes an
extensive flowchart that shows how each component is related. We do not repeat this discussion here,
but rather list the evaluated components that are the subject of this study:

• exponential weighted averaging (EWA) for classification error correction
• fusionability: the effect of trust in detectors
• fusion operations: how well these compensate individual failures of detectors

As discussed previously, we use EWA for each detector to incorporate past opinions on the message
history before fusing the EWA adapted results. Thus, a choice must be made which value is chosen to
represent the output in opinion space to fuse in the next step. In summary, we provide results for the
behavior of the fusionability, which models the trust in detectors, as well as the chosen fusion operation,
and finally the use of the EWA.

9.3 Evaluation Methodology

The previous chapter has introduced a dataset for the evaluation of misbehavior detection, named the
VeReMi dataset [172]. This dataset, generated from state of the art simulation models that cover a
wide variety of different scenarios, is intended to be a baseline comparison for misbehavior detection
mechanisms. In that work, we also present a preliminary set of results for several detection mechanisms,
for which all of the corresponding source code is publicly available. We adopt their results and examine
the impact of fusion between these proposed mechanisms. Therefore, we briefly revisit the proposed
detection mechanisms, select threshold values for each, and examine the impact of different fusion op-
erations on this basis. The dataset contains a number of different attacks, some of which are designed
to circumvent the detection mechanisms; this setting is ideal for our fusion experiments, as it exactly
matches the setting described in the previous section.

9.3.1 Attacks

As discussed in Chapter 7, the attacks in the VeReMi dataset are variants of data injection attacks,
executed independent of one another. The malicious behavior of the attacker is consistently executed
throughout the simulation, and the baseline is therefore that all messages sent by the attacker should
be classified as malicious. The attacks in the dataset are a constant erroneous position (attacker 1), a
constant offset to the real position (attacker 2), a random position (attacker 4), a random offset to the
real position (attacker 8) and a random stop (attacker 16) [172]. For the random attacks, randomness
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is newly applied for each message (i.e., attacker 8 may send an offset of 5 meters, followed by an offset
of 200). In general, it is possible that some of these attack patterns may cause certain messages to
correspond almost completely to a legitimate message (e.g., the random offset of attacker 8 is zero). It is
conceptually possible to limit which malicious messages should be classified as malicious; however, this
limit is necessarily arbitrary. Therefore, we instead grant that there will be some inaccuracies in our
assessments and require the detection of all attacker messages for perfect precision and recall. This is
analogous to what was done in the previous chapter.

9.3.2 Detection Mechanisms

In the work introducing VeReMi [172], we used four mechanisms: a simple speed check, a distance
moved verifier, an acceptance range threshold, and a sudden appearance warning. These mechanisms
were previously discussed in Chapter 6. We also apply these mechanisms here, because they satisfy our
requirement that decisions be made immediately on the message level (rather than waiting for multiple
messages, as previous work has proposed). Each of these mechanisms has a threshold parameter that
specifies at which point the observed data is considered malicious. These parameters were previously
studied in Chapter 8, and here we only briefly re-introduce the detectors and the parameters we use.

The simple speed check (SSC) is a detector newly proposed in [172], and represents a simplification
of the Kalman filter proposed by Stübing et al. [82], as the necessary parameters for the Kalman filter
are not provided by Stübing et al. [82]. Our attempts at reproducing their results failed, and thus we
elected to design the SSC, which for every given message examines the difference between the current
claimed speed and the speed computed from the time and position differences from the previous beacon
message. The threshold decides what difference between these messages is considered acceptable. In our
work, we use the value τ = 10 m/s as the threshold for maliciousness, which performed particularly well
against the attacker that performs a sudden stop (attacker 16 as discussed in [172]). As this attack is
difficult to detect by other mechanisms, we choose a threshold for SSC that detects this attacker well.
The final opinion to represent this output has a minimum uncertainty of 0.1, and a disbelief of ∆v

τ (set
to 0.9 if the fraction too large); the remaining mass is assigned to belief.

The distance moved verifier (DMV) is also a detector that was proposed in [172], which detects attacks
where a stationary position is claimed, as previously discussed by [56]. The threshold of this verifier is
set to the minimum movement required between beacons. This detector was clearly inspired by VEBAS’
minimum distance moved, which performs a similar task, but takes a longer list of messages to output
a result. Because it was observed that this detector works very well at different thresholds depending
on the specific attacker, we use the extreme thresholds 1 and 25 as thresholds in this work. Thus, we
essentially have two instances of this detector, detecting attacks either with high recall (threshold 25) or
with high precision (threshold 1). The output opinion of this detector is 0.5 belief or disbelief, depending
on the threshold, and 0.5 uncertainty.

The acceptance range threshold (ART) tests whether the received message is in the reception range
of the receiver. This detector has been relatively well-studied [30, 141], from which the most impor-
tant conclusion is that this threshold is very sensitive to the chosen channel model. Because reception
range varies greatly between open areas (e.g., highways) and urban areas (where buildings interfere with
transmission), finding an appropriate threshold that still detects the majority of malicious messages has
proven to be difficult. In this work, we use 500 as the threshold, which has previously been shown to be
a good threshold [141], and we [172] have previously shown that this value provides a balance between
precision and recall. The opinion used to represent the output is chosen the same way as in previous
work [141].

The sudden appearance warning (SAW) tests whether new vehicles suddenly claim to appear close
to the receiver, indicative of an attack that aims to trigger a breaking response from the receiver. This
detector has very poor detection performance in terms of false negative rate, as it accepts all messages
that do not trigger this warning. However, detecting this specific attack may be invaluable, and therefore
this detector represents an example of the highly specific detectors discussed in Section 9.2. Since the
best results were always achieved for threshold values of 200, we adopt this threshold value, while the
opinion is chosen analogously to ART.
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9.4 Fusion: Results & Discussion

We now discuss our results for the different fusion operations, introduced in Section 9.2. As discussed
there, we expect that the results produced by the MIN and MAJ operations depend strongly on the
detectors included in their input. In these results, several detectors of varying quality are included, thus
illustrating the effects of such variations. Our expectation regarding the specific fusion operations is that
they fill the intermediate space between the two extremes, MIN and MAJ.

Low Density High Density

Figure 9.2: Precision-recall graphs for low densities (left) and high densities (right) for attackers 1, 2,
and 4, without EWA. The numerical labeling refers to the projection of the trust in the opinion.

The results of our detection runs are shown in Figures 9.2 and 9.3 in the form of precision-recall
(PR) graphs. We here show the results for high attacker densities (30% attackers) only; similar results
(when compensating for prevalence) are achieved for the other parts of the data set, with 20% and 10%
attackers. Each plot includes both the five fusion operations and the projected value of the fusionability
parameter, which was evaluated with the values 0.1, 0.3, 0.5, 0.7, 0.9; the arrows in the figures indicate
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Low Density High Density

Figure 9.3: Precision-recall graphs for low densities (left) and high densities (right) for attackers 8 and
16, without EWA. The numerical labeling refers to the projection of the trust in the opinion.

the minimum and maximum, while a line connects the other values. The motivation for these values is
provided in Section 9.2.

The first important observation is that MIN always has maximum recall, while precision varies around
the prevalence (i.e., ≈ 0.3). This means that MIN almost always classifies as an attack; it essentially
takes the best of each detector for the detection of attacks, resulting in practically no false negatives.
However, it is also very imprecise, since as soon as any detector has a false positive, or some indication
of disbelief, the MIN operation combines this into a false positive. This re-enforces the need for fusion
– in almost all situations, some detectors have false positives; here, SAW is the primary cause, as its
performance is very poor (see Chapter 8). Recall that this is by design, i.e., SAW is integrated in Maat
to detect a very specific attack, and output complete uncertainty otherwise. This causes MIN to perform
poorly. On the other hand, MAJ works best or worst depending on the specific attack; this is due to the
fact that for MAJ to detect an attack, the majority of the detectors must agree. Since not all detectors
detect all attacks, the attack type acts as the most important factor, which clearly is not a desirable
situation. An attack that triggers one detector with high certainty will not trigger MAJ, thus MAJ
performs poorly for attackers 4 and 8 (which are the hardest to detect). On the other hand, attacker 16
is more likely to be detected using MAJ than by using one of the other fusion operations. These results
are in line with the predictions we made in advance, and they show in particular that the base line fusion
operations are not desirable.

Having discussed the base line operations, we now examine the results for the subjective logic oper-
ations. The first observation is that CCF and CBF perform the same in all graphs; after a discussion
with Audun Jøsang, author of subjective logic, we verified that this is not due to a programming error,
but rather it is an artifact of how CCF is defined for binary domains. In other words, this result caused
by the underlying commonality between these detectors; although they differ in output, the decisions
generated by these detectors turn out to be equivalent. Looking back at the theory, we deduce that the
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cause is that both operations treat uncertainty in a similar way. Any differences that could arise in the
general case do not apply to our situation, because those differences are associated with the treatment
of composite values in the domain. In binomial domains, the only composite value is the uncertainty,
and therefore both operations predict the same outcome. Since the CCF operation is computationally
expensive for large input sets, we recommend the use of CBF over CCF.

What remains is a comparison between CBF and WBF. For the first three attackers, as shown
in Figure 9.2, the performance of CBF and WBF is comparable in most cases, with the exception of
attacker 1 in a high density setting, and attacker 4. Against attacker 1 in a high density setting, fusion
performance is quite low; this is caused by the fact that the DMV and SSC detectors all perform worse in
a high density scenario with stop-and-go traffic. Since the vehicles pass the position claimed by attacker
1, the ART is not sufficiently effective to counteract the reduced performance of the other detectors, and
the WBF is affected slightly more by this issue. CBF with low detector trust is affected the least by
this, since the uncertainty before fusion is highest here. However, CBF with low detector trust has very
poor performance against attacker 4 in both low and high density settings.

A similar observation to that of attacker 1 can be made regarding attacker 16, where the low detector
trust CBF also performs well. Note that this attack, once it is fully active, is exactly the same as attacker
1, except that the constant position is a position that was true at some point. However, the attacks that
show random behavior (i.e., attacker 2 and 8) show that WBF outperforms the other fusion algorithms,
particularly with high detector trust. This suggests that despite not modifying the detectors for the
attacks we applied, WBF can perform well against these attacks. Note also that by definition, CBF will
reduce the fused uncertainty as the amount of detectors goes up, which suggests that as we implement
more detectors for different attacks, a negative performance impact can be expected2. Based on these
results, we recommend that WBF be applied in the fusion process, as it shows acceptable performance
against attacks that are not previously known.

In summary, detecting these five attacks is surprisingly difficult; we find that generalized over all
attacks, the CBF and WBF operations appears to work best. MIN detects practically all attacks, but
has a very low precision, thus implying a huge FPR. MAJ detects some attacks well, but other attacks
poorly; this indicates that the configured set of detectors significantly influences the result. Adding a
detector could completely change MAJ results, and would also affect CBF performance significantly.
Thus, we recommend WBF. Fusion with subjective logic lacks the disadvantages of MIN and MAJ, but
introduce their own; the overall performance is not very good on a message basis, despite being better
than individual detectors.

Attempting to compensate for these errors through the use of detector trust does not solve this
problem immediately; although the choice of this value meaningfully influences the output (see e.g.,
attackers 4, 8 and 16), there is no clear-cut best value. Although this is not particularly surprising,
what is notable is that for attacker 1 in high density scenarios and for attacker 16, a very low trust in
detectors performs well, while on the other hand, for attacker 4 and 8, the exact opposite is the case.
When comparing with the MAJ detector, it can be seen that in every setting, lower trust in detectors
tends more towards a majority decision. This is useful information for future work: the trust can be
used to configure how strongly the system is to be influenced by the majority of detectors.

In general, we can conclude that for our intended design, where many different, highly specific de-
tectors are designed to detect the presence of specific attacks, a choice with low trust seems the best
choice. However, in particular attacks 2 and 8 show that significant improvements should be made to
the detectors themselves, as fusion can only correct for so much. Fusion can perform the desired task of
raising the performance to some extent, but not beyond the capabilities of individual detectors. Previous
work [35, 88] has suggested an EWA may be a simple mechanism that corrects errors in detection; thus
as a simple improvement of the output of each mechanism, we apply EWA and study the resulting fused
output.

2This is because CBF is designed to accumulate evidence, as the name suggests. The issue is that this only works if the
evidence suggests the same thing, yet evidence from detectors that see different attacks will provide conflicting evidence
(of different attacks). It is well-known [144] that CBF does not deal well with this type of conflict. Thus, although it seems
obvious that CBF will not work well in a system with many different detectors and attacks, it should still be confirmed by
experiment. It may be possible to provide design guidelines for detectors that can account for this weakness of CBF.
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9.5 Exponential Weighted Averaging: Results & Discussion

We experiment with different values of EWA: α = 0.5 (equal weight to new and old information) and
α = 0.1 (old information is weighted significantly stronger than new information). We expect EWA to
improve results by a lot if the detectors’ errors are random. For false positives, we expect EWA to be
particularly beneficial, since this not related to malicious behavior. For these experiments, we also expect
increased recall, since the attacker model is quite simple. More precisely, all attacks are constant; if we
allow intermittent attacks (where the attacker changes its behavior), recall will likely drop significantly.
Choosing a small α is likely to be vulnerable to such intermittent attacks. We thus study a small choice
for α and the equal balance between new and old information to determine the effectiveness of this EWA,
with the goal to inform future work that analyzes the EWA under these more difficult conditions.

α = 0.5 α = 0.1

Figure 9.4: Precision-Recall graphs with respect to attackers 1, and 2 with EWA: α = 0.5 to the left,
α = 0.1 to the right.

In Figures 9.4 and 9.5, we present the PR graphs for the high density cases from Figures 9.2 and
9.3, now applying an EWA to each detector’s results, followed the fusion operations, as discussed in
Section 9.2. The graphs for low densities show similar behavior, and can be accessed in the same data
repository. As can be observed by comparing these results with the results from the previous section,
the improvements offered by the EWA are quite limited overall. However, it can also be observed that
everywhere, the recall improves significantly, while for precision it depends on the attack what improve-
ment is observed (see e.g., attacker 8, where both precision and recall improve, and attacker 16, where
recall comes at the cost of precision). Therefore, contrary to our expectation, we can make no universal
statements recommending the use of EWA, despite the advantageous setting. The setting is particu-
larly advantageous, because the attacker maliciously modifies all packets they transmit; traditionally,
the weakness of the EWA is that it is vulnerable to periodic attack behavior. For example, an attacker
might only manipulate one in three messages; this would cause the EWA-based system to accept all
messages as legitimate. For this reason, we recommend avoiding the EWA in the form presented here.
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However, future work on a specialized EWA variant that takes advantage of the evidence implied by a
subjective logic opinion may compensate for such attacks. We thus suggest that such techniques should
be used and tested against reputation style attacks, and to avoid naive EWA for misbehavior detection.

α = 0.5 α = 0.1

Figure 9.5: Precision-Recall graphs with respect to attackers 4, 8 and 16, with EWA: α = 0.5 to the left,
α = 0.1 to the right.

9.6 Conclusion of Fusion Evaluation

We have discussed different fusion operations for the fusion of misbehavior detection mechanisms. Of
the many available operations, WBF is the most balanced over all the results, while MIN catches all
attackers but has extremely low precision. As discussed previously, it is also the operation that is
least susceptible to errors caused by the addition of new detectors to the fusion process. The primary
goal of this study was to determine how well fusion can compensate for the errors produced by some
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detectors. WBF adequately performs this task if the attacks are unknown; CBF and MAJ perform better
if the detectors are designed specifically to detect attacks present in the dataset. Thus, for misbehavior
detection in the short term, WBF is the best candidate in our opinion. For revocation or punishment
of detected misbehavior, MAJ could be used along with a human agent who judges the results. Such
a forensic analysis may be realized through Maat using the reporting process outlined in Section 4.3.
We recommend that an EWA be avoided in all situations. Finally, we recommend that fusionability
be configured to a high value, unless there is evidence that a specific detector performs poorly in a
specific scenario. Finding and correctly recognizing such specific scenarios is out of the scope of this
study. Because Maat preserves all the history, a potential solution could be to apply machine learning
techniques to this problem.

9.7 Overall Evaluation Conclusion

Combined with the previous chapter, this concludes our evaluation of Maat. We have analyzed the
entire fusion process that occurs after a query for a message is made, as outlined in Section 5.5. In
our evaluation, we focused on immediate evaluation of received messages, which is the most difficult
classification task available for detectors. Success in this task enables a rapid response in the form of
reaction and recovery, which is not available as a next step in the approach taken by others. In addition,
we decided to primarily target fusion to ensure reasonable performance regardless of the quality of
individual detectors. Although this does not necessarily guarantee the best overall performance, it
makes sure that fusion can deal with the inevitable poor performance that some deployed detectors will
have.

Many more experiments can be performed based on our results to further improve detection rates
and to design better detectors. The primary goal of our evaluation chapters was not to exhaustively and
conclusively show that Maat performs best in every regard, but rather to improve the overall understand-
ing of misbehavior detection. Thus, we focused on a nuanced discussion of new metrics and different
options of fusion, rather than claiming to present a final solution for the problem. In Chapter 8, we
discussed how our dataset was generated, and we demonstrated the performance of individual detection
mechanisms introduced in Chapter 6. Our evaluation clearly shows that no single detector we presented
can detect all the attacks on the C-ITS.

The objective of this chapter was to compare different fusion operations that were described in
Chapter 5. For fusion operations, a similar statement applies: there is no perfect fusion operation that
will always perform better than all other operations. By evaluating different attacks in different traffic
densities, we were able to determine the dependencies between the parameters of our fusion process
and the resulting performance per attacker. In real systems, attacks are unpredictable, therefore we
discussed how Maat may be tuned to avoid being dependent on the type of attack, and rather have
a good performance across all attacks. We have also learned here that applying an EWA to detection
results appears to cause poorer performance almost universally, despite the fact that our attacks are
continuous and not designed to avoid detection by an EWA. Therefore, we strongly advise against its
usage in the future.
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Part IV

Implications & Conclusion
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Chapter 10

Conclusion

In this thesis, we have provided a number of contributions in the area of misbehavior detection in
cooperative intelligent transport systems. Cooperative intelligent transport systems are networks of
cooperating vehicles, which may be partially or even fully autonomous. The communication in these
networks aims to provide additional safety and comfort features for drivers and passengers. Wide-scale
adoption of cooperative intelligent transport systems will likely enable city-wide applications such as
increased fuel efficiency and automated traffic lights. The primary objective of misbehavior detection
in this domain is the efficient and timely detection of attacks by malicious or faulty participants in the
system.

In our work, we have described a world modeling and fusion approach to enable the flexible integration
of individual detection mechanisms. This enables the detection of both existing and new attacks by
exploiting knowledge of the underlying physical processes. The world model we design provides a basis
on which detection can be performed in a coherent manner, while remaining independent from the
specifics of the communication stack. Through our application of subjective logic, detector output can
be converted and fused into a single decision, either when receiving messages or when data is queried
from an application. Subjective logic provides a number of different fusion operations, which enable its
flexibility. As part of our work, we describe multi-source extensions of the fusion operators that are
non-commutative, enabling us to transfer this flexibility to a scenario with multiple sources. Besides
enabling our use of subjective logic in a consistent manner, this contribution enables multi-source fusion
in any setting where subjective logic is applied.

Our contributions are prototypically implemented in the Maat detection framework, which is an
open source system that demonstrates the efficacy of our approach. As part of this implementation,
we also provide a library of detection mechanisms for which no public implementations were previously
available. To demonstrate the performance of our fusion approach, we also provide an extensive discussion
of methodological issues that are prevalent in our field. In particular, we show that existing work is not
replicable or reproducible, and provide a detailed exposition of potential solutions. One of the issues is
that there is no public dataset that can be used for the comparison of misbehavior detection mechanisms.
To resolve this issue, we design a public and repeatable setup for simulation experiments that is modular
enough to allow extensions with new attacks. An initial dataset, called VeReMi, with five types of
attacks is published and designed to be a baseline for any evaluation of misbehavior detection work.
VeReMi includes a wide variety of traffic scenarios and densities, making it suitable for the assessment
of detection performance of widely deployed cooperative intelligent transport systems.

We use VeReMi to compare the different detection mechanisms we propose, as well as the overall
performance of fusion operations. Our evaluation places much stricter requirements on the detection
than previous work, requiring that every attacker-generated message be classified as malicious by every
vehicle to achieve a true positive rate of 1. Previous work has often focused on detecting the presence
of one or more attacker by every vehicle. In this stricter evaluation scenario, we show that individual
detectors perform significantly worse than previously reported. We also show that Maat can outperform
both the individual detectors and naive fusion proposals based on earlier work in most scenarios, as
evidenced by the results in Chapter 9.

In addition to this comparison of raw detection performance, we introduce novel metrics for evaluation
of the suitability of detectors. First, we introduce a novel application of the Gini Index to determine how
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the detection performance of individual vehicles relates to the overall detection performance. The Gini
index measures dispersion in a distribution; we apply this measure to estimate how false positive and
false negative rates are distributed over vehicles. This metric can be used to determine the suitability
of a specific detector in a specific traffic situation, which can then be applied by an expert to decide
on the relative weighting of the detector outputs. We also discuss a spectrum of application-specific
metrics related to the cooperative adaptive cruise control application. We demonstrate the importance
of considering application-specific metrics in addition to detection rates, noting that misbehavior affects
every application differently.

10.1 Research Questions

We now revisit the research questions introduced in Section 1.3, which were divided into three blocks.
The three blocks ask questions about detection performance, functionality and methodology, respectively.
Each block has several sub-questions; in the following, we put these questions in the context of our results.
In the next and final chapter, we discuss the limitations of Maat and observe how these questions have
changed and led to new open research challenges that can be addressed in the future.

In the first block, which focuses on detection performance, we asked Research Question 1:

How can performance of misbehavior detection in cooperative intelligent transport systems
be improved to support a vehicle’s autonomous decision making?

This question addressed two key points of novelty contained within this thesis; the context of C-ITSs
and the improved detection performance. The C-ITS context of our work, specifically the trend towards
its’ usage in autonomous driving, implies that “eventual detection” of an attack is no longer sufficient.
This is the case even if it is within a time frame of seconds or minutes; we rather require immediate
identification of misbehavior. Within this context, we derived three sub-questions that ask, respectively,
whether detectors can independently deal with noisy information, how data fusion can contribute, and
how fusion results can be improved by modifications of detectors. In regards to noisy and uncertain
information, we have shown in Chapter 8 that it is unlikely that one can design a single detector that
can both deal with a broad variety of attacks and deal with a wide variation of traffic scenarios. In
response to the second sub-question, we designed Maat to apply data fusion with subjective logic, in
order to arrive at significantly improved performance beyond baseline fusion operations. Finally, we
describe a variety of means to improve performance by further weighing detection results (fusionability)
and propose a model for improving detector performance beyond hard thresholds. In summary, we have
shown that a variety of existing and new tools can improve detection performance, despite the more
stringent requirements.

Our second block aims at data and detection result management, guided by Research Question 2:

How can data be stored, managed, and exchanged to support improved detection, inclusion
of new detection mechanisms, and validation of detection?

This question covers the different design goals that we aimed for in our development of Maat. We
further sub-divided this into sub-questions concerning how data is stored, how detection results can be
fused, and how Maat can be used for revocation. The Maat world model addresses the first question,
providing a generic storage framework for the data arriving at a vehicle and an intuitive representation
for detector output through directed edges. By labeling edges with subjective logic opinions, we enable
a fusion process based on subjective logic, through which detection mechanisms with appropriately
modeled confidence can be weighed without further intervention. However, our results show that multiple
instances of detectors that use different thresholds perform better than a single instance with a single
thresholds. To be able to take advantage of this, we introduce a weighing factor to represent the
importance of each detectors output, allowing Maat to use multiple copies of the same detector with
different thresholds to exploit the advantages of instances. The Maat world model also provides an
intuitive way to reproduce detection results by sending a sub-graph to other entities, which can validate
and use these results. This is an advantage over existing approaches, which required trust in the reporting
entities in order to perform this task. Maat thus provides a reliable means to perform global revocation.
In the future, techniques from secure aggregation may be applied to reduce the large bandwidth overhead
required in this approach, enabling wide-scale deployment of Maat for revocation purposes.
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Our third block of questions addressed methodological concerns with respect to earlier work, which
are raised by the new context in which we asked the other research questions. The formulation of
Research Question 3 was:

How can we support the scientific development and analysis of misbehavior detection in
cooperative intelligent transport systems?

This was divided into two sub-questions, addressing the necessary methodological improvements, and the
design of new metrics. To answer questions on methodology, we provided a detailed review of method-
ological practices in this thesis, followed by a description of our own methodology and its advantages. As
part of this new methodology, we also introduce a variety of new metrics that in part expose weaknesses
in existing work. We use these metrics to demonstrate the utility of fusion, but also describe how the
metrics can be used to direct future research by showing where attacks expose the system to misbehav-
ior. These ideas are valuable not just for the design of Maat, or misbehavior detection in C-ITSs, but
they also provide insights into developments in cyber-physical systems. We reviewed how misbehavior
detection in C-ITSs can be applied to cyber-physical systems, describing the commonalities and differ-
ences between the two. Because our work is publicly available and more methodologically rigorous than
previous work, we expect these contributions to provide a lasting impact on the field of misbehavior
detection as a whole.

10.2 Recurring Patterns in C-ITS

Having discussed the immediate results described in the thesis, we now consider the wider field of
misbehavior detection in C-ITSs, as previously discussed in our survey [170]. We extend this discussion
to explain how Maat connects to these developments in the wider field, supporting future research in those
areas and ensuring integration with our results. Maat can also support future research by addressing
some of the open issues raised in our survey; we discuss these in detail in Section 11.3.

Physical models A number of mechanisms use physical models to detect misbehavior. These models
allow a detection mechanism to incorporate specific knowledge about the driving behavior of vehicles.
The complexity of models ranges from very simple (e.g., cars cannot drive faster than 500 km/h [30], two
cars cannot occupy the exact same position [45]) to very complex models (e.g., analysis of acceleration
and deceleration behavior [167], movement prediction including turn probabilities [108], correlation of
vehicle positions to street maps). These models may also include the sensors of the observing vehicle. Due
to their effectiveness, as well as the fact that these mechanisms are able to validate incoming data rather
than relying on node trust, physical models have long been considered essential. An important question
in this context is the appropriate choice and combination of models to cover a variety of situations a
vehicle may encounter.

One of the primary advantages of Maat is that the inclusion of multiple physical models describing
a specific phenomenon can easily be done by integrating these as detectors. By using subjective logic in
a positive formulation (i.e., a high belief that the data corresponds to real-world behavior), the accuracy
of the physical model can also be included. This allows a representation in which physical models
can be designed independently and added on the fly (e.g., through an over-the-air update), without
requiring complete reconfiguration of the system. Maat’s design also enables the standardization of
models, enabling the exchange of detection results between vehicles and the validation of such results at
a global level.

Centralized detection Early works often perform the whole process of misbehavior detection locally
and only send reports about local decisions to the back-end to perform pseudonym resolution and revo-
cation. In these works, the back-end does not perform any detection task; rather, it just verifies received
reports for correctness and checks for false accusations. However, performing detection exclusively in a
local fashion prevents the detection mechanism from detecting larger clusters of distributed misbehavior.
For instance, an attacker could repeatedly mount attacks at different locations, which might be detected
locally, but only in correlation show the full extend of the attacks’ severity. Hence, newer schemes include
the back-end more and more in the actual detection work. Notably [89] and [86] employ such centralized
detection approaches. A challenge to solve in this context is the level of event reporting. In order to
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allow the back-end to detect more attacks than possible locally, it may be necessary to report more data
to the back-end, including even mildly suspicious behavior, to provide a large enough data basis for
centralized detection.

As discussed previously in Section 4.3, Maat supports the exchange of verifiable reports. Because we
require that detection is deterministic in Maat, as long as all messages are signed, these can be forwarded
to any entity that supports Maat. Since the world model is not fundamentally ego-centric, it can also
be used to perform detection at a central authority. A central authority can then determine the ground
truth in cases where arbitration is required. Similarly, a misbehavior authority as in the US SCMS [168]
can deploy Maat to determine which vehicle(s) to revoke based on received reports. Here it is important
to note that the initial message processing phase in Maat can also link together pseudonyms if this
information is available, by assigning all pseudonyms of the same vehicle to the same entity vertex.

Machine learning techniques Two challenges that many detectors face are the interpretation of
locally collected data to find patterns (data-centric) and the merging of different misbehavior detectors
into one coherent output (node-centric). To solve these problems, a number of schemes adapt ideas
from machine learning. Similar ideas can also be observed in the domain of network intrusion detection,
where patterns in traffic are identified through machine learning. The same can be seen in the domain
of C-ITSs, where some authors are employing pattern recognition techniques and learned classifiers to
determine message trustworthiness [71, 154]. In our view, the use of machine learning for this purpose
should be followed critically, especially when the training phase of such classifiers includes explicit attacks
that are classified. The difficulty with many machine learning approaches is two-fold: 1) training bias
can result in invalid results when the training data does not properly cover the entire input space, and
2) the output of most algorithms is difficult to interpret. These are both issues that are being addressed
separately in the field of machine learning; we point these out here because they are aggravated by the
C-ITS context. The first, training bias, is aggravated in two ways by C-ITS: due to their experimental
nature, there are no training sets available that describe all valid behavior in a C-ITS; additionally,
the correctness of data is strongly influenced by context, a classifier for messages cannot be learned in
isolation1.

The second difficulty of machine learning is that algorithm output is difficult to interpret. Typical
works only use the output as a classification between malicious and benign; in real-world scenarios,
additional classes (e.g., malfunctioning components) might be very useful. More importantly, it is hard
to judge based on the algorithm output why a certain message was classified as such. Due to the cyber-
physical nature of C-ITSs, recovery & response decisions would be greatly simplified if such information
was available (for example, “this vehicle claims false speeds”). Similarly, making revocation decisions
and improving detection performance, which will be a necessary part of any real-world deployment of
C-ITSs, require some human-interpretable output that can assist in figuring out why a detection was
made.

As machine learning, subjective logic is also a technique borrowed from the field of artificial intelli-
gence. As opposed to machine learning, however, subjective logic is more aimed at artificial reasoning,
where a (human-interpretable) reasoning process is used. This significantly reduces one of the main the
difficulties of machine learning for this application, namely that of output interpretation. However, arti-
ficial reasoning tools such as subjective logic also enable more understandable forms of machine learning.
Maat provides new foundations for the application of machine learning in this domain; in our view,
the best candidate is to learn optimal values of fusionability applied to detectors in different scenar-
ios. Machine learning is useful here, because manually accounting for all possible scenarios in which
different detector trust would be appropriate is infeasible. Because Maat also enables more extensive
data collection and independently verifiable results (e.g., by a central authority), it presents a way in
which learning can also be supplied with sufficient data. By performing learning tasks in the backend,
human supervision can also be included to reduce the training biases mentioned above. However, a lot
of practical work is still required for this to be useful.

1In short, this is important because the input space becomes much larger. For a simple classifier, the input space
would only consist of all possible messages. However, in C-ITSs, the message validity depends on the previously received
messages (e.g., vehicles cannot contain the same space at the same time, and the validity of a speed claim depends on the
previous speed). Thus, the classifier must be stateful; if done naively, this creates an infinite input space (i.e., all message
sequences). A classifier can thus only be learned on a small subset of the input space, and most classifiers applied in the
literature do not address this issue explicitly.
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Chapter 11

Future Work

This chapter provides an outlook of the thesis, discussing the relation between Maat and open issues in
misbehavior detection for C-ITS and the application of Maat to other types of CPS. We also highlight
some of the new research questions raided by Maat, which could be studied in future work.

11.1 Remaining Challenges for Maat

Maat, our framework for generic fusion of misbehavior detection mechanisms in cooperative intelligent
transport systems, enables many novel features that were discussed in this thesis, but to some of these
features, important limitations apply. We highlight these challenges in this section, discussing potential
solutions that could be developed based on the results achieved in this thesis. Future work can address
the resulting new and remaining challenges in future work.

11.1.1 Runtime Performance

In our work, we concentrated on detection performance metrics as a baseline for comparison with other
schemes. This is in part because runtime performance cannot be assessed through the evaluation strategy
we took, which is in line with the majority of work in this field, suggesting that this issue is considered
insignificant at this stage. We designed Maat with the intent that it can perform well on modern multi-
core systems by isolating detectors as much as possible from the framework itself. Our prototype executes
in reasonable time any meaningful performance optimizations, and fast enough to perform large scale
evaluations (around 37 million reception events) in a few hours with all parameterizations of Maat that
we consider. However, we did not extensively study the detection latency or space requirements added
by the framework as compared to executing the detectors independently. Existing hardware included in
vehicles is rapidly evolving at this stage, as a variety of new applications is being deployed by vehicle
manufacturers, and thus it is difficult to pin down what kind of hardware would be available to run
Maat. We expect that as the available hardware improves, Maat will be combined with an increasing
number of detectors, allowing it to scale up in terms of detection performance as new hardware becomes
available. The validation functionality provided by Maat also enables expensive detection mechanisms
to be executed offline by a central authority, e.g., for revocation purposes. Such advanced revocation
features would allow individual vehicles to save computational resources by assuming attacks are less
likely, under the assumption that sufficient evidence can still be gathered by the authority.

11.1.2 Sensor Data

Maat was originally developed to allow the inclusion of sensor data in the decision process. In our
prototype, we focused on GPS information as the primary class of sensor data, because this data is very
similar to the data received through ad-hoc communication from other vehicles. However, other sensor
data may have significantly higher frequencies and the volume of data may be too high to store this
data in the world model directly. Examples of such data include LIDAR scans and camera images. We
did not consider these types of data directly, in particular because obtaining such sensor data that has
a direct relationship with the data received through the C-ITS requires modeling and implementation
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of sensors in the simulation environment. In addition, the volume of data is too large to include it
into Maat directly. This, to include arbitrary sensor data into Maat, there are two complementary
approaches; aggregated input or pruning within Maat. The first approach is to pre-aggregate sensor
data by converting a series of camera or LIDAR images into a small set of points (such as labeled objects
with properties such as position and speed), which can be processed individually by Maat. Secondly, as
discussed briefly in Chapter 4, it is possible to extend Maat with a pruning component that regularly
aggregates data items into a single data item. We consider these options to be complementary, together
enabling a realistic extension to Maat. The second approach has the additional advantage of enabling
Maat to contribute to secure aggregation and information dissemination. Finally, pruning within Maat
enables the system to purge outdated, unnecessary data, which would be necessary to deploy Maat in
the long term.

11.1.3 Expressiveness of Opinions

The current prototype of Maat provides a somewhat limited expressiveness compared to what subjective
logic offers. In particular, we assume that any particular data item is either true or false, which is rep-
resented by a binomial subjective logic opinion. Although minor deviations from real-world information
can be captured by a detector that produces opinions, some information is lost compared to the use
of more complex opinion types. There is no theoretical boundary that prevents the implementation of
Maat using multinomial or hyper opinions to express belief about more complex events. A more complex
event is an event that has more than two possible states (e.g., the color of a vehicle). For subjective
logic in general, it is necessary that the set of possible states is a finite set, although practical limitations
mean that opinions on events with infinite possible states are not useful either way. However, for Maat,
the difficulty additionally lies in the fact that multinomial opinions have 2k − 1 degrees of freedom, and
it is thus non-trivial to store these opinions efficiently. For hyper opinions, there are even more: these
have 2k + k − 3 degrees of freedom. Limiting the domain of opinions (i.e., making k small) is a way to
control the trade-off between expressiveness and storage requirements. Additional optimizations may be
possible, e.g., by noting that in many domains, most of the beliefs will be zero, suggesting that optimized
storage (e.g., only storing the degrees of freedom associated with states that have non-zero values) may
be useful.

11.1.4 Expressiveness of Relationships

Maat currently assumes that each detector can evaluate the correctness of messages in isolation. This
simplifying assumption enables us to provide a simple fusion process where all results are collected and
fused as equal. However, some detectors do not actually determine the accuracy of a message, but rather
relationships between messages. Detectors are often used as message classifiers, with the underlying and
implicit assumption that messages received previously were correct. A simple example is the overlapping
position detector designed originally by Bißmeyer et al. [45], which compares the positions of two messages
and determines whether the vehicles overlap. This mechanism actually expresses that two messages
cannot both be correct; the original authors resolve the conflict by picking the most trustworthy of the
two senders. The Maat world model does not currently support the expression of opinions on multiple
messages at once, but rather relies on the detector’s state to express which of the two is more trustworthy.

We made an unsuccessful attempt to express these relationships through logical equations, which
are a feature of subjective logic. However, it is non-trivial to find the correct logical equation that
corresponds to each detector, because there are multiple representations for the same statement. In
addition, adding data items as a combination of other data items increases Maat’s storage complexity.
In our implementation, we noticed that making decisions based on these equations is very susceptible to
circular reasoning: if a decision depends on trusting one of two otherwise equally trustworthy messages,
the order in which messages arrive matters. Similarly, making decisions based on equations potentially
introduces an undesirable factor of dependence between detection mechanisms into Maat. This raises
new questions and calls for the implementation of a reasoning component, whose design we consider to
be future work. In the current version of Maat, we abstract away from equations by allowing detectors to
generate and replace previous opinions with new versions. This concentrates the problem in the detector
logic and removes information that could be useful in decision making.
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11.2 New Research Questions

The challenges discussed above serve as ample inspiration for future developments in this area; in this
section we provide new research questions relating to these challenges.

11.2.1 Subjective Logic: Opinion Representations & Fusion

Two of the primary limitations of Maat listed above are directly related to the practical application
of subjective logic. Our attempts to apply subjective logic for a misbehavior detection system that
autonomously decides on the validity of messages have revealed areas where subjective logic can be
improved. The first of those areas was the design of multi-source fusion operations, which we provided
in Chapter 5. However, as far as we are aware, there are no efficient implementations of multinomial
or hyper opinions. Our implementation is based on existing source code from the original author of
subjective logic, which only provides binomial opinions. We have made improvements to this code and
made it publicly available1. As noted, the most important reason we identified for the lack of such an
implementation is related to storage complexity. It thus appears intuitive to pose the question:

RQ 4. Can a space-efficient implementation of multinomial opinions be designed, whose average com-
plexity is significantly better than storing a Dirichlet PDF with 2k + 1 parameters?

A similar question exists for hyper opinions:

RQ 5. Can a space-efficient implementation of hyper opinions be designed, whose average complexity is
significantly better than storing a Dirichlet hyper-PDF with 2k + k − 1 parameters?

Finally, we remark that our implementation of the consensus & compromise fusion (CCF) (Section
5.2.5) is computationally expensive for large input sets (i.e., large amount of detectors). This is caused
by the fact that for n input opinions, there are many permutations of the domain of size k that satisfy
the choices specified by our equations. Since the CCF is significantly more computationally expensive
than the other fusion operations, application of this operation may not be worth the additional effort.
However, an analysis of the relevant equations reveals on the one hand that CCF will likely perform better
in multinomial and hyper opinion scenarios. Further analysis suggests that many of the conditional base
rates defined there are by definition zero, and this leads us to believe that a much more computationally
efficient implementation may be possible. It may thus also be reasonable to ask:

RQ 6. What is the computational complexity of consensus & compromise fusion, and can the computa-
tional effort required be reduced?

11.2.2 Subjective Logic: Data Relationships & Subjective Networks

Going beyond the representation and fusion of individual data items, we now address how subjective logic
can express relationships in data. Recall that the domain of our subjective opinions is always represented
by a single data item. However, many realistic detection mechanisms express opinions about relationships
between data items, i.e., relations between different domains. Existing work typically circumvents this
problem through the aforementioned implicit assumption that data already contained within the world
model is true (as discussed in Chapter 7). For example, receiving a message from an attacker claiming
to be at position P , followed by a legitimate message claiming to be at position P at approximately
the same time causes the attacker message to be accepted and the legitimate message to be rejected. If
the messages were reordered, the opposite would be true, at least for this specific detection mechanism.
In Maat’s current implementation it is assumed that each detection mechanism has an internal logic
to consistently deal with this issue, however it raised the question whether this can be performed in a
generic way:

RQ 7. Is it possible to build a generic framework in which expressions on data conflicts can be stored
independent of message order?

1See https://github.com/vs-uulm/subjective-logic-java.
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The immediate application of such a generic framework would be to be able to deal with the example
situation above, and generically store that one of those two messages is correct. This information could
then be fused with additional information about the correctness of these two messages (i.e., from other
detectors) whenever an application accesses the data. An intuitive answer to this research question
would be to extend Maat in such a way that it expresses data conflicts between any two data items.
However, doing so greatly increases the storage complexity of Maat, and implies that the trustworthiness
of every data item should be assessed to determine which is most accurate. Therefore, this also has
a significant impact on the computational complexity, because it increases the graph size and adds
additional comparisons of all fused opinions on the respective data items. Thus, another natural question
becomes:

RQ 8. How is the computational cost of fusion in Maat affected if relationships between data items are
included in the world model?

11.2.3 Real-world Experiments

A large body of work on vehicular communication and even cooperative intelligent transport systems has
been performed using simulation experiments. Recent developments have shown wide-scale measurement
campaigns for communication and applications, but as far as we are aware, none of those experiments
cover security or misbehavior detection. A lot of research has thus been dedicated to perfecting simulation
experiments, with significant strides being made by several of the major network and traffic simulation
toolkits. These developments are essentially based on measurement campaigns and modeling work done in
the various fields, as well as software implementations of the relevant communication layers (particularly
MAC and multi-channel behavior). Combined with the evaluation methodology described in this thesis,
we have discussed how datasets may be generated based on such simulation experiments to enable wide-
scale studies of detection performance. Although such evaluations are very useful to assess detection
performance in realistic settings, they are limited by the fact that simulations will not cover all real-
world behavior. With recently performed large scale field trials, it may be time for the field of misbehavior
detection to look towards real-world experiments for the C-ITS domain. Such real-world experiments
will also potentially enable researchers to compare with other approaches to achieve reliability, such as
sensor fusion. However, we note that real-world experiments for C-ITS are not necessarily sufficient to
prove that misbehavior detection works, because of the nature of the attacks that are studied. Based on
these ideas, we propose the following two research questions that could be investigated:

RQ 9. How can realistic attacks be included in real-world field studies for the evaluation of misbehavior
detection mechanisms?

Note that real-world experiments with real-world attacks on applications can in the worst case lead
to crashes, and thus we expect the primary means of study will be a modification or manipulation of
existing test data. This can be done randomly, algorithmically or even through some learning process,
depending on the desired attacker performance. Because field tests will likely not be as large as the
possibilities for simulation results, we expect that it will also be important to consider how simulation
can be improved through field trials. Therefore, we also pose this second question:

RQ 10. How can misbehavior detection results from field trials of individual vehicles be generalized to
analyze the effects of wide-scale deployment?

11.3 Open Issues in Misbehavior Detection for C-ITS

Even though many specific aspects of misbehavior in C-ITSs have been addressed, are several notable
open issues in this domain. These open issues were previously raised in our survey [170]; here we also
address how Maat can potentially stimulate advances in each area.

Identification of misbehaving nodes Data-centric misbehavior detection mechanisms are essential
for detecting conflicting data and identifying which data is malicious, but they may not be able to
identify the attacker directly. Although some work, such as reliable platooning, the increased data
reliability alone is enough, for many applications it is important to identify and remove the attackers
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from the network in the long term. Identifying which node is behaving maliciously is useful for local
or global revocation, limiting both the amount of attackers in the network and the impact they may
have on the network. However, this requires low false positives: local exclusion of benign nodes could
be catastrophic for both applications and future detection performance. In the worst case, it may lead
to network segmentation, where trust mechanisms cause two groups of vehicles to mutually distrust
each other. Therefore, it is important to both provide high quality detection and the ability to revise
revocation decisions that were made. Maat supports such activities by storing the associated evidence.
In addition, Maat could be combined with identification techniques (e.g., the Kalman filter tracking
approach proposed by Stübing [108]) by associating multiple pseudonyms with the same node vertex.
This process could also be performed after-the-fact by an authority that executes a central variant of Maat
(see Section 4.3). The design privacy-preserving protocols that can efficiently detect who is behaving
maliciously without de-anonymizing all affected users is an unsolved problem, and thus requires future
work.

Voting, pseudonyms and Sybil attacks For local detection within a single vehicle, node-centric
misbehavior detection mechanisms in the literature often rely on long-term identities to perform voting
or other trust-based evaluation of data. The basic idea is simple: assuming that an event, such as an icy
road, is detected by all passing vehicles and further assuming that the majority of vehicles is honest, a
simple majority vote about whether the road is actually icy should reveal possible misbehavior. However,
it is a common assumption that vehicles will use short-term pseudonyms for communication to protect
privacy, as discussed in Section 2.1. Therefore, an important open issue is to build a scheme that enables
voting with such pseudonyms, while still providing the necessary resilience against Sybil attacks, where
an attacker uses multiple identities to inflate the trust in a vehicle or in some data. A simple solution
would be to require that a vehicle can only use one pseudonym at a time, but this assumption requires
significant cryptographic or communication overhead to protect the pseudonym keys. In addition, such
an approach would greatly reduce the privacy that is achievable using pseudonyms. Another approach
would be to focus on limited pseudonym re-use in combination, and essentially assume that detection
mechanisms are good enough to detect attacks even in the presence of Sybil attacks. The implementation
of such schemes in Maat could be an approach to study how feasible such an assumption is. The detected
Sybil attacks should then, however, also incur strong penalties through a revocation infrastructure, since
detecting Sybil attacks is known to be a hard problem.

Cooperative misbehavior detection As we have seen in our experiments in Chapter 8, local detec-
tion bias of individual vehicles is a significant issue. Some vehicles simply cannot detect certain attacks, if
they are sufficiently well-crafted. Therefore, cooperative misbehavior detection may be the essential next
step to detect even such challenging cases. Through local reporting, vehicles may be able to exchange
evidence and detect more attacks than they otherwise could. However, we have to assume that the
misbehavior reports can be fake as well. Some schemes propose to solve this issue by collecting a number
of misbehavior reports from different vehicles, again using a voting mechanism, which relies on long-
term identities, as discussed previously. Other approaches propose to solve the issue by so-called suicide
schemes where vehicles reporting misbehavior of other vehicles also temporarily exclude themselves from
the network (see Section 2.3.4). In our opinion, future work should focus on the integration of evidence
received from other nodes, validating reports by re-running their misbehavior detection mechanisms.
Comparing those results with internal detection results is very likely to reveal discrepancies caused by
false reports; the main challenge for this approach is the required throughput to be able to transfer all
evidence between all vehicles.

Level of reporting to back-end As discussed above, we need to rethink the level of reporting to the
back-end in order to benefit from misbehavior detection in the back-end. If the back-end only receives
reports about definite misbehavior, then local nodes have already identified the misbehavior. Hence, the
additional benefit of involving the back-end is limited to possible revocation of the misbehaving nodes’
certificates. On the other hand, it is not possible to report all data received by vehicles to the back-end
because of bandwidth constraints. It is an open challenge to find a good trade-off between reporting
somewhat suspicious behavior to the back-end in order to allow for better attack detection and not using
too much bandwidth.

147



11.4 Applications beyond C-ITS: Misbehavior Detection in ICS

Now that we have studied the state of the art misbehavior detection mechanisms for C-ITSs and designed
a framework for their fusion, we address the possible application of these ideas to other cyber-physical
system (CPS). For a detailed discussion of different types of CPS and the security work done within
those fields, refer to Giraldo et al. [155]. In this section, we take the example of industrial control system
(ICS), and discuss the experiments we performed in that context with an earlier version of Maat, as well
as the lessons learned in this process.

11.4.1 Industrial Control Systems

Unlike C-ITSs, ICSs are a type of CPSs that has historically grown out of the field of control systems, and
the focus of these systems has primarily been safety, rather than security [119]. Specifically, ICSs must
avoid individual but random failures from escalating and causing a cascading failure, that is, causing a
shutdown of components that are not directly related to the original failure. To this end, much research
has been conducted, but recent developments regarding attacks on these systems, such as those by
Stuxnet, that these systems are not built to resist targeted attacks. In the past, ICSs were internal
networks, which were completely separated from the Internet by a so-called “air-gap”, meaning no direct
connectivity is possible. However, the necessity of patching these systems and the use of re-writable media
like USB-devices has led many security researchers to conclude that a complete “air-gap” is not a feasible
solution. In addition, secure connectivity has already provided organizations with significant cost savings
and ease of management for these systems. Therefore, we study how misbehavior detection can be used to
improve security in these systems, in particular against an insider attack that attempts to cause damage
by disrupting or sabotaging the industrial process controlled by the ICS. Again, the recurring patterns
we have identified for C-ITSs may provide significant insights for new developments in ICS, for example
through the application of physical models to detect anomalies with high accuracy. The open issues
faced in C-ITSs similarly affect ICSs; a lack of public, real-world datasets that are detailed enough to
detect misbehavior specifically is very important additional challenge, which we also observed in C-ITSs.
Combined with the fact that most detection mechanisms are closed-source, this makes reproducibility and
comparison between mechanisms and design of suitable misbehavior detection fusion nearly impossible.
Worse, ICSs additionally face the challenge that there is virtually no authentication of any kind available
in most networks, which means that misbehavior detection must also detect inauthentic messages. In our
view, misbehavior detection mechanisms are not the suitable tool to solve such authentication problems;
proper authentication and integrity is necessary to build a reasonable system.

11.4.2 Application of Maat to ICS

As part of this thesis, we experimented with the application of an early prototype of Maat to an ICSs
testbed as part of the CRISALIS research project. The result of this analysis was that misbehavior
detection in such a testbed requires that there is more than once source of information that is fed to
Maat. Unlike the scenario of C-ITSs, where vehicle behavior is well-defined and can be converted into
data-centric detection mechanisms easily, in an ICS such attempts at modeling the system essentially
end up replicating the control logic. We therefore attempted to include a secondary source of information
in the form of a host-based intrusion detection system (HIDS) that sends alerts to Maat over a secure
channel.

The testbed we used was provided by a project partner, and simulated a power grid as an industrial
control system. The testbed includes typical components of an ICS, consisting of two programmable
logic controllers (PLCs), a human machine interface (HMI), a switch and a SCADA workstation. A PLC
is a hardware component in which controllers can be implemented that describe an industrial process;
we discuss the power grid control in some detail below. There is also a HMI, which is a simple hardware
device typically installed in a factory or power system, which provides a simple display for an operator
that supervises the controlled process. The SCADA workstation is a Windows machine running the
proprietary tools needed to program and flash the other devices; it can also be used as a monitoring tool.
The testbed itself models a power grid that receives input from solar and wind sources, as well as power
consumption from houses. These three inputs are used by the distributed controller to decide the output
of a power plant; the original demonstration of this testbed shows how attacks on these PLCs can be used
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to attack the power plant to cause over production. For communication between the distributed parts
of the PLCs, a simple switch is used to connect all the components over a standard TCP/IP network.
Although the documentation claims the Modbus protocol can be used, all devices in the testbed we had
access to used the proprietary Siemens S7 protocol to communicate over TCP. The S7 protocol is widely
deployed, but also known to be vulnerable to a variety of attacks and protocol issues [63] (e.g., lacking
authentication).

In our application of Maat to the testbed, we designed a world model for this control process. The
model of this process consists of a set of data items, each of which has an associated source, and these
data items each represent a specific variable in the control process. A set of detectors then evaluates the
data items stored in the framework. The detectors are are PLC command validation, the raw S7 packet
plausibility check, and an alert report from a HIDS that reports to Maat when it detects suspicious
behavior on the Windows machine that supervises the controller. The PLC command validation checks
whether an observed PLC command (i.e., increase or decrease output) corresponds to the desired output
based on previously received messages. The raw S7 packets are checked for value plausibility (a simple
range check). The HIDS uses a secure channel to alert Maat of suspicious behavior on the SCADA
machine.

During the on-site analysis with the testbed, we attempted to perform experiments to show that Maat
could be applied in an ICS. Unfortunately, technical difficulties with the testbed resulted in a control
behavior that was entirely specified by the controlling PLC, which performed direct measurements. This
is different from what was documented for the testbed; the original design foresaw, as discussed above,
that the controller receives its inputs through the network. On-site analysis over several days established
that none of the components in the network were able to successfully establish TCP connections, but the
process control behaved normally. Because the original developers of the control process were no longer
available, and the proprietary S7 protocol could not be replaced, we decided to abandon the use of this
testbed.

Lessons Learned First and most importantly, we learned that performing misbehavior detection
in the absence of authenticity is very difficult, especially when the detection system is deployed to
the same switch as the controller. When deployed in this manner, Maat only has a single source of
information (i.e., the network), whose authenticity is not guaranteed. This means that Maat must
rely entirely on data-centric mechanisms; however, if integrity is also not guaranteed, a data-centric
analysis of sensor data exchanged through the network is not particularly helpful, other than to decide
whether this data can at some point occur in the process. On the other hand, in C-ITSs, instances
of Maat always have access to at least some information sources that are not attacker-controlled (e.g.,
GPS data or signal measurements). Another lesson learned is that detectors in ICS will often very
closely resemble the processes they validate, since the process is typically controlled in a centralized
manner. This is fundamentally distinct from C-ITSs and even fully autonomous driving: these systems
are fundamentally decentralized, since locality is important. The fact that detectors closely resemble the
controlled physical process is seen as problematic in this field, where some suggest simple redundancy
could provide similar benefits at much lower cost [119]. Finally, our idea to integrate a HIDS into Maat
suggested that its’ fusion algorithms may also be useful for Security Information and Event Management
(SIEM) systems. These systems are used in large enterprise networks to monitor and track attackers
under human supervision, but typically focus on high-level information fusion, if they fuse data at all.
Maat’s use of low-level fusion techniques may be beneficial for such systems if they are used to monitor
CPSs, which could be studied in future work.

11.5 Summary

This thesis has provided new insights on misbehavior detection in the context of C-ITSs, in particular
with regards to result fusion. Using subjective logic and a flexible graph-based data analysis framework
called Maat, we describe a complete fusion framework that can be used as a stepping stone for misbehavior
response. This response can also benefit from the uncertainty information that Maat provides, as well as
the reporting mechanisms that Maat enables. Beyond future applications, we have also introduced new
research questions raised by our work, highlighting how Maat’s foundations may be extended to enable
advanced detection techniques.
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