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Abstract
IR-tree models assume that categorical item responses can best be explained by multiple response
processes. In the present article, guidelines are provided for the development and interpretation of
IR-tree models. In more detail, the relationship between a tree diagram, the model equations, and
the analysis on the basis of pseudo-items is described. Moreover, it is shown that IR-tree models do
not allow conclusions about the sequential order of the processes, and that mistakes in the model
specification can have serious consequences. Furthermore, multiple-group IR-tree models are
presented as a novel extension of IR-tree models to data from heterogeneous units. This allows, for
example, to investigate differences across countries or organizations with respect to core para-
meters of the IR-tree model. Finally, an empirical example on organizational commitment and
response styles is presented.

Keywords
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Item response tree (IR-tree) models are a class of item response theory (IRT) models that assume

that the responses to polytomous items can best be explained by multiple psychological processes

(Böckenholt, 2012; Tutz, 1990). Thus, IR-tree models go beyond standard IRT models like the

graded response model (GRM) that usually comprise only one process or dimension. Importantly,

IR-tree models may contain processes that are not related to the degree of agreement. Therefore,

they are well suited to address response styles such as the tendency toward extreme categories

(extreme response style, ERS) or toward the midpoint of a scale (midpoint response style, MRS;

see also Baumgartner & Steenkamp, 2001).
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Even though the idea of modeling multiple processes in categorical data has existed for years

(e.g., Maris, 1995; McFadden, 1981; Tutz, 1990), these models didn’t gain much interest in psy-

chology until the seminal publications of Böckenholt (2012) and De Boeck and Partchev (2012).

Since then, IR-tree models have attained increasing popularity in psychometrics (e.g., Meiser,

Plieninger, & Henninger, 2019; Plieninger & Heck, 2018; Tijmstra, Bolsinova, & Jeon, 2018) as

well as in applied fields (e.g., DiTrapani, Jeon, De Boeck, & Partchev, 2016; Lang, Lievens, De

Fruyt, Zettler, & Tackett, 2019; Zettler, Lang, Hülsheger, & Hilbig, 2016).

The goal of the present article is twofold. The first goal is to make IR-tree models easily

accessible to scholars in organizational psychology and beyond. To this end, guidelines for IR-

tree models are presented that elaborate on and highlight important points of the relevant psycho-

metric literature. These will be presented in the first section, followed by a section on caveats and

pitfalls to illustrate what can go wrong if one does not adhere to these guidelines. The second goal is

to present a new extension of IR-tree models to multiple groups that is applicable to data that are

collected from potentially heterogeneous units such as different countries or organizations. The last

section puts all this into illustrative practice by means of an application to empirical data on

organizational commitment. In summary, the present work will help scholars to review published

work on IR-tree models, to apply existing IR-tree models to their own single- or multigroup data,

and to develop new IR-tree models for research questions specific to their field. The examples used

herein will, without loss of generality, focus on response style modeling, but many other applications

are possible as well (see below).

IR-Tree Modeling

As of today, most applications of IR-tree models focus on response styles, and researchers in

organizational psychology may make similar use of IR-tree models if they want to control for such

response tendencies. Examples of such applications are the study by LaHuis, Blackmore, Bryant-

Lees, and Delgado (2019), who investigated factors predicting job performance, or the analysis by

Böckenholt (2012), who studied consumer ethics. However, IR-tree models may also be used

outside the area of response styles, and examples relevant to organizational psychology include

modeling the compromise effect in economic choices (Böckenholt, 2012), and modeling answer

changes (Jeon, De Boeck, & van der Linden, 2017) or missing answers (Debeer, Janssen, & De

Boeck, 2017; Jeon & De Boeck, 2016). Additional examples for future applications are listed in the

section Further IR-Tree Models.

Thus, IR-tree models can be applied in situations where discrete data are suspect to individual

differences in more than one latent variable or process. These models may then be used instead of

a unidimensional model, and guidelines for IR-tree modeling will be presented in the following.

More specifically, the three building blocks of IR-tree models will be presented illustrating how a

tree diagram leads to a set of model equations that can be used to define pseudo-items for

estimation.

Tree Diagram

IR-tree models have the advantage that tree diagrams can help to both illustrate and develop a model.

Such tree diagrams are also used for multinomial processing tree (MPT) models in cognitive

psychology (e.g., Riefer & Batchelder, 1988), and IR-tree models are a special case of hierarchical

MPT models (Matzke, Dolan, Batchelder, & Wagenmakers, 2015; Plieninger & Heck, 2018).

Herein, I will focus on an IR-tree model for items with five response categories k (k ¼ 1; . . . ; 5)

proposed by LaHuis et al. (2019). It aims to disentangle three different processes xp (p ¼ 1; . . . ;PÞ,
namely the target trait (e.g., commitment) and two response styles, ERS and MRS. The diagram in
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Figure 1 illustrates that process x1 ¼ t (target trait) leads to agreement, process x2 ¼ e (ERS) leads

to extreme categories, and process x3 ¼ m (MRS) leads to the middle category. Because midpoint

responses are modeled conditional on nonextreme responses, the model will be called the midpoint

conditionally on nonextreme (MCN) model.

The model parameters x are in fact probabilities such that, for instance, extreme categories are

chosen with probability eij and nonextreme categories with probability 1� eij. These model para-

meters are specific to person i and item j (j ¼ 1; . . . ; JÞ. In more detail, each parameter x is

reparameterized using a probit-link IRT model with a person ability parameter y and an item

difficulty parameter b (and sometimes also an item discrimination parameter a):

xpij ¼ Fðypi � bpjÞ; ð1Þ

where F is the cumulative normal distribution function. For the MCN model, this leads to

tij ¼ F yti � btj

� �
ð2Þ

eij ¼ F yei � bej

� �
ð3Þ

mij ¼ F ymi � bmj

� �
: ð4Þ

Thus, the probability to agree (i.e., tij) is higher the higher the person ability yti and the lower the

item difficulty btj, and analogous relationships hold for eij and mij.

In summary, the model assumes that responses to 5-point items can be explained by the target

trait as well as the two response styles MRS and ERS. Often, an IR-tree model fits better than a

unidimensional alternative, and this is taken as an indication that response styles are present in the

data at hand (e.g., Böckenholt, 2012; Khorramdel & von Davier, 2014; Plieninger & Meiser,

2014). The IR-tree model then allows to measure response styles as well as the response-style

free target trait.

Model Equations

The model is formally defined by its model equation that is implied by the tree diagram (Böck-

enholt, 2012; Plieninger & Heck, 2018; Riefer & Batchelder, 1988). Let Xij be a random variable

representing the response of person i to item j, and let xij be a realization of Xij. Then, the

probability Pr for a branch b of the model is given by multiplying all parameters x along a branch

in the diagram:

Item

1− ti j
ei j 1

1− ei j 1−mi j 2

mi j 3

ti j
1− ei j 1−mi j 4

ei j 5

Figure 1. Diagram of the MCN model, an IR-tree model for 5-point items composed of the processes t (target
trait), e (extreme response style), and m (midpoint response style).
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PrðbijÞ ¼
YP

p¼1

xpij
vbpð1� xpijÞwbp ; ð5Þ

where vbp and wbp count how often the parameters xp and ð1� xpÞ occur in branch b (e.g., if xp

occurs 0 times, then xp
0 ¼ 1). For instance, the probability for the upper branch that leads to

Category 3 in Figure 1 is given by multiplying the three terms along this branch, namely,

tijð1� eijÞmij.

If multiple branches b lead to a category k, the respective probabilities of the corresponding

branches b ¼ 1; . . . ;Bk are added:

PrðXij ¼ xijÞ ¼
XBk

b¼1

PrðbijÞ: ð6Þ

For the MCN model, this general formulation implies the five equations given below. For

example, the probability for Category 3 is given by adding the probabilities of the two respective

branches shown in Figure 1.

PrðXij ¼ 5Þ ¼ tijeij ð7Þ

PrðXij ¼ 4Þ ¼ tijð1� eijÞð1� mijÞ ð8Þ

PrðXij ¼ 3Þ ¼ tijð1� eijÞmij þ ð1� tijÞð1� eijÞmij

¼ ðtij þ 1� tijÞð1� eijÞmij ¼ ð1� eijÞmij ð9Þ

PrðXij ¼ 2Þ ¼ ð1� tijÞð1� eijÞð1� mijÞ ð10Þ

PrðXij ¼ 1Þ ¼ ð1� tijÞeij: ð11Þ

These model equations, combined with the reparameterizations specified in Equations 2–4,

define the multinomial distribution. They illustrate the model in a condense form and guide the

interpretation. Here, for example, Equation 9 shows that the probability to choose Category 3 is

governed only by the parameters e and m. This is evident from Figure 1 only on closer inspection:

The upper branch leading to Category 3 contains the term t, and the lower branch contains the term

1� t. However, they cancel each other out in Equation 9 such that t does not influence PrðX ¼ 3Þ.
Note further that the individual equations of a multinomial model sum up to 1. This is the case for the

MCN model: The probability for an extreme response (i.e., X ¼ 1 or X ¼ 5) is teþ ð1� tÞe ¼ e;

the probability for either X ¼ 2 or X ¼ 4 simplifies to ð1� eÞð1� mÞ; adding this to the probability

for X ¼ 3 gives ð1� eÞð1� mÞ þ ð1� eÞm ¼ 1� e; finally, the sum of this and the probability for

an extreme response equals PrðX � 1Þ ¼ 1� eþ e ¼ 1.

In summary, both the tree diagram and the model equations are helpful means to develop and

interpret a model. While the diagram is more illustrative, the equations show more directly the

relationship between each category and the parameters involved. Moreover, the model equations

define the pseudo-items that are useful for data analysis.

Pseudo-Items

A convenient feature of IR-tree models is that they can be estimated using software such as Mplus or

R (e.g., Böckenholt, 2012; De Boeck & Partchev, 2012). To this end, the original data have to be
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recoded into so-called binary pseudo-responses (or pseudo-items) according to the following set of

rules:

1. The original response x is recoded into P pseudo-responses x�p, one for each model

parameter xp.

2. If the model equation pertaining to response x contains parameter xp, the pseudo-response x�p
is coded as 1.

3. If the model equation pertaining to response x contains parameter 1� xp, the pseudo-

response x�p is coded as 0.

4. If the model equation pertaining to response x does neither contain xp nor 1� xp, the pseudo-

response x�p is coded as Missing.

This is illustrated for a strongly disagree response (i.e., x ¼ 1) in the MCN model in the follow-

ing: Recall that Equation 11 was defined as PrðXij ¼ 1Þ ¼ ð1� tijÞeij. First, the MCN model is

comprised of the three parameters t, e, and m. Thus, each response (or item) is recoded into three

pseudo-responses (or pseudo-items). Second, the model equation contains the term e, and thus Rule

2 leads to x�e ¼ 1. Third, the equation contains the term 1� t, and thus Rule 3 leads to x�t ¼ 0.

Fourth, parameter m is not present in the equation, and thus Rule 4 leads to a missing value for x�m.

This is also illustrated in the last row of Table 1, where the coding schemes for the other response

categories are shown as well.

In practice, the recoding procedure is applied to all responses xij. Thus, the new data set contains

J � P binary pseudo-items instead of J polytomous items. Then, a three-dimensional, binary IRT

model can be fit with three correlated latent variables yp, one for each group of pseudo-items x�p.

Apart from that, note that estimation on the basis of pseudo-items works only for classical IR-tree

models that do not contain mixtures, that is, for models where the simplified model equations (e.g.,

Equations 7–11) contain only products of x-parameters but not sums (Jeon & De Boeck, 2016;

Plieninger & Heck, 2018).

Further IR-Tree Models

A further, very popular IR-tree model for 5-point items was proposed by Böckenholt (2012). It

is shown in Figure 2 and will be called the extremity conditionally on nonmidpoint (ECN)

model. The model is composed of the processes t (target trait), e (extreme response style), and

m (midpoint response style), and the tree diagram implies the model equations depicted in

Figure 2. These equations lead to the following pseudo-items: ð0; 0; 1; 0; 0Þ for x�m, ð0; 0;�; 1; 1Þ
for x�t , and ð1; 0;�; 0; 1Þ for x�e . Thus, the ECN model and the MCN model (see Figure 1) have

in common the aim to disentangle the target trait and two response styles. However the

Table 1. Pseudo-items for the MCN Model.

Item Response Equation Pseudo-Item Response

x PrðX ¼ xÞ x�t x�e x�m

5 t e 1 1 –
4 t ð1� eÞ ð1� mÞ 1 0 0
3 ð1� eÞ m — 0 1
2 ð1� tÞ ð1� eÞð1� mÞ 0 0 0
1 ð1� tÞ e 0 1 —
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structure of the model and the interpretation of its parameters differ slightly. For example, the

process m affects all five categories in the ECN model but only the inner three categories in the

MCN model.

Apart from that, IR-tree models can be suitable for categorical data outside the area of response

style research. Consider the model in Figure 3 that comprises two processes (see also De Boeck &

Partchev, 2012; Tutz, 1990). Such a model may be appropriate in cases where one process is only

applicable for “positive” outcomes of the other process. For example, process r may correspond to

making a choice or not, and process s may differentiate between two different choices B1 and B2.

Or, process r may encode whether someone was absent from work, and process s may differentiate

between two different reasons for absenteeism. Or, in a situational judgment test (SJT; see also

Lievens et al., 2018), process r may encode whether a chosen option was “correct,” and process s

may differentiate between different types of correct behavior.

Caveats and Pitfalls of IR-Tree Modeling

The guidelines above describe the steps that are necessary to develop, apply, and interpret an IR-tree

model. However, things can go wrong in this process, and two issues that need special attention will

be discussed in the following. These caveats together with the guidelines above will help scholars to

leverage the full potential of IR-tree models.

Order of Psychological Processes

The first issue concerns the order of the latent processes. Tree diagrams such as the one

depicted in Figure 1 are drawn with a specific order of the parameters x. This might lead to

the belief that the model implies a certain sequential order of the psychological processes.

Item

1−mi j

1− ti j
ei j 1 (1−mi j)(1− ti j)ei j

1− ei j 2 (1−mi j)(1− ti j)(1− ei j)

ti j
1− ei j 4 (1−mi j)ti j(1− ei j)

ei j 5 (1−mi j)ti jei j

mi j 3 mi j

Figure 2. The ECN model: The tree diagram is depicted on the left, the model equations on the right.

Item

ri j
si j B2 ri jsi j

1− si j B1 ri j(1− si j)

1− ri j A 1− ri j

Figure 3. An IR-tree model for items with three outcomes, A, B1, and B2: The tree diagram is depicted on the
left, the model equations on the right.

6 Organizational Research Methods XX(X)



However, this is not the case. The model equations contain products (and potentially sums) of

parameters, and these operations are commutative; for example, Prðx ¼ 5Þ ¼ te ¼ et. In other

words, it is irrelevant for the model equations in which order the processes occur on a path in a

tree diagram, it is only relevant which processes occur. Thus, IR-tree models make assumptions

about the number and type of processes involved but not about their order, and such inter-

pretations can be misleading.

Additionally, a set of model equations such as Equations 7–11 can sometimes be illustrated

using different diagrams. For example, the diagram depicted in Figure 4 also represents an IR-

tree model. Therein, respondents choose with probability eij an extreme response and with

probability 1� eij a nonextreme response. Conditionally on an extreme response, respondents

can either agree or disagree, and so on. If the order in a tree diagram was meaningful in itself,

the models in Figures 1 and 4 would make completely different assumptions. However, when

deriving the model equations from the diagram as shown on the right in Figure 4, it becomes

clear that they match Equations 7–11. Thus, the two models shown in Figures 1 and 4 are

equivalent. This illustrates that both the model equations and the tree diagram are helpful

means that guide the interpretation. Whether and how two models differ is most evident from

the model equations. Two different diagrams may indeed imply different models (e.g., the

MCN depicted in Figure 1 and the ECN model depicted in Figure 2), but they sometimes may

also imply equivalent models as shown herein.

Apart from that, it should be noted that a psychological theory about the order of the processes

may be expressed in a tree diagram. The only thing to keep in mind is that it does not work the other

way round, that is, the IR-tree model does not provide a formal test of the order. Furthermore, one

may argue that some probabilities in an IR-tree model can be expressed as conditional probabilities

thus implying some sort of order. For example, in the MCN model (see Figures 1 and 4), the process

m does only occur in combination with nonextremity 1� e. However, such conditional probabilities

should not be overinterpreted given the nature of the data in typical applications of IR-tree models: It

is probably safe to say that these psychological processes do rather occur in parallel, mutually

reinforcing, and/or heterogeneously across persons, items, and situations and not in a fixed and

invariant order.

In summary, IR-tree models allow interpretations and make assumptions about the nature of the

psychological processes that are involved, but not about their sequential order. Such interpretations

are misleading and must be based on other research designs and statistical models if desired.

Item

1− ei j
1−mi j

1− ti j 2 (1− ei j)(1−mi j)(1− ti j)

ti j 4 (1− ei j)(1−mi j)ti j

mi j 3 (1− ei j)mi j

ei j
1− ti j 1 ei j(1− ti j)

ti j 5 ei jti j

Figure 4. Alternative diagram of the MCN model shown in the box on the left. Even though the diagram is
different from that in Figure 1, the implied model equations shown in the box on the right are identical.
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Definition of Pseudo-Items

The second issue concerns parameter estimation on the basis of pseudo-items. As explained above,

an IR-tree model may be estimated in the form of a multidimensional, binary IRT model after the

original items have been recoded into binary pseudo-items. This might lead to the misconception

that the pseudo-items can be defined independent of each other. For example, a researcher may want

to define the third pseudo-item x�m as ð0; 0; 1; 0; 0Þ instead of ð�; 0; 1; 0;�Þ in the MCN model (see

Table 1) in order to reduce the number of missing values. Or, one might want to define the second

pseudo-item x�e as ð1; 0;�; 0; 1Þ instead of ð1; 0; 0; 0; 1Þ for some reason. However, this is not

legitimate within the IR-tree framework: This leads to a model (as implied by the pseudo-items)

that no longer corresponds to the specified model equations and tree diagram. Worse still, such

changes can easily lead to an improper model in the sense that the model equations do not sum

to 1 and that no tree diagram exists that could illustrate its structure. Figuratively speaking,

such an improper model may make predictions such as 50% heads and 60% tails. Strictly

speaking, the set of equations implied by the pseudo-items do not even compose a probabilistic

model because the definition of a discrete probability distribution requires that the sum of the

individual probabilities is 1.

Note that the estimation of an improper model may nevertheless converge without problems,

because the software “doesn’t know” that an IR-tree model for polytomous data is specified

rather than a multidimensional IRT model with three seemingly independent, binary items.

Furthermore, it can be shown that improper models lead to biased parameter estimates and

severely biased model fit.

Multiple-Group IR-Tree Models

The guidelines and caveats presented above will help to successfully use standard IR-tree models.

However, specific research questions sometimes need specific model extensions.

Although many such extensions have already been presented in the literature, all these

models are applicable only to data from homogeneous populations—where relevant parameter

values hold for all members of that population. However, certain circumstances may lead to

violations of this assumptions. For example, levels of the target trait may differ across

industries or across measurement occasions. Similarly, countries may differ with respect to

variability in extreme response style. Likewise, a researcher may want to investigate whether

the item parameters are identical for women and men or across age groups. Ignoring existing

group differences may result in misleading conclusions. One way to address such situations

are multiple-group models, and these will be presented in the following. Therein, it is

assumed that the structure of the tree diagram is the same for all groups, but certain para-

meters may differ.

Standard IRT models have been extended to multiple-group IRT models, for example, by Bock

and Zimowski (1997). Likewise, IR-tree models can be extended to multiple-group IR-tree models

by allowing the model parameters to differ between different groups g (g ¼ 1; . . . ;G). Thus, adding

subscript g and combining, for convenience, Equations 1, 5, and 6 gives:

PrðXgij ¼ xgijÞ ¼
XBk

b¼1

YP

p¼1

ðFðypgi � bpgjÞÞvbp 1� Fðypgi � bpgjÞ
� �wbp : ð12Þ

That is, given the tree diagram, which is the same for all groups, the probability of a response of

person i in group g to item j depends on his or her latent ability y and on the item difficulty b, and

these item parameter may differ across groups.
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Furthermore, in the single-group model (G ¼ 1), it is assumed that θi*MVNð0;SÞ. Thus, the

model is identified by centering each latent variable yp around 0, and the (co)variances of the latent

variables contained in the matrix S are freely estimated. In the multiple-group case, S may differ

across groups leading to θgi*MVNðμg;ΣgÞ. However, the latent means μg need to be constrained

for identification purposes, for example, by assuming μg ¼ 0g.

In order to make meaningful comparisons of persons across groups, invariance/equivalence of the

item parameters has to be assumed or established. In the IRT literature, this is referred to as the

absence of differential item functioning (DIF), while the term strong/scalar invariance is used in

factor analysis (for details, see Cheung & Rensvold, 1999; Raju, Laffitte, & Byrne, 2002; Reise,

Widaman, & Pugh, 1993; Tay, Meade, & Cao, 2015; Vandenberg & Lance, 2000). In detail,

assuming that the item parameters do not differ across groups reduces bpgj to bpj. This then allows

to relax the constraint of μg ¼ 0g and to freely estimate μg in G � 1 groups while constraining only

one group, usually the first one to μg¼1 ¼ 0. Stated differently, the model is identified by centering

all dimensions around 0 in the first group; paired with invariant item parameters, this allows to

compare all other groups to the first group and to each other with respect to mean levels of the latent

variables. Note further that invariance or the absence of DIF are concepts that are usually associated

with the target trait. Extending these concepts to response styles is straightforward and necessary,

but it should be kept in mind that invariance of response styles and invariance of target traits may

have different interpretations substantively.

Conveniently, multiple-group IR-tree models can be estimated with software for multidimen-

sional, multiple-group IRT models such as Mplus (Muthén & Muthén, 2012) as long as the

model does not contain genuine mixtures (see above). An illustrative example will be presented

in the next section, and the respective Mplus code is contained in the accompanying research

compendium.

In summary, multiple-group IR-tree models are relevant to situations where data were collected

in different countries, industries, organizations, or at different points in time, for example. The

model class is a straightforward extension of IR-tree models, and thus the guidelines and caveats

described above apply to single- and multiple-group models in the same way. Furthermore,

multiple-group IR-tree models also build on standard multiple-group models (e.g., Reise et al.,

1993; Tay et al., 2015), and thus topics such as DIF or measurement invariance apply to multiple-

group IR-tree models as well. Note further that multiple-group models pertain to situations where

the groups are known, but models for unknown groups (latent classes) exist as well (e.g., Tijmstra

et al., 2018).

Worked Example: Response Styles and Workers’ Commitment Across
Countries

In the following, an illustrative example on organizational commitment in different countries will be

presented to put the first three sections of the article into practice. In detail, the guidelines for single-

group models will be applied, and multiple-group models for different countries will be used to

illustrate this new model class.

Method

Sample. Data from the International Social Survey Programme were used, namely, from ISSP

2015—Work Orientations IV (ISSP Research Group, 2017). The data set is composed of respon-

dents from 37 countries, and data from Venezuela (see below) were selected, as were data from ten

other countries chosen at random (selected countries were Australia, China, Croatia, Hungary,

Latvia, Lithuania, Mexico, New Zealand, Slovenia, and United Kingdom). A random subsample

Plieninger 9



of 500 participants (with complete cases) per country was used herein. Three countries had fewer

respondents, and all participants were used in such cases. The final data set comprised 5,311

participants in total.

Measures. Respondents answered three questions about their organizational commitment, for exam-

ple, “I am proud to be working for my firm or organization,” on a 5-point scale from strongly agree

to strongly disagree. The correlations among the three items across all participants where r12 ¼ :56,

r13 ¼ :34, and r23 ¼ :42. The response distributions of the three items across countries are shown in

the appendix.

Results

First, the application of IR-tree models will be illustrated using data from one specific country,

namely, Venezuela. Second, multiple-group models will be used to investigate cross-cultural pat-

terns across all 11 countries. All models were estimated using Mplus 7.4 (Muthén & Muthén, 2012).

IR-Tree Model for Data From Venezuela. The data from Venezuela (n ¼ 382) were selected for illus-

trative purposes because the response distributions of the three items indicated that extreme cate-

gories were selected with high prevalence in this country (see the appendix). The MCN model

discussed above (see Figure 1) was fit to the data resulting in descriptive fit indices of AIC ¼
2,590 and BIC¼ 2,650. This model was compared to a GRM, that is, a standard unidimensional IRT

model that does not take response style into account. The fit indices of the GRM were larger

signaling inferior fit with AIC ¼ 2,690 and BIC ¼ 2,740. Thus, it may be concluded that a multi-

dimensional model that accounts for response styles explained the data better than a standard

unidimensional model.

The parameter estimates showed the following pattern: Three be parameters were estimated,

namely, one for each of the three questionnaire items, and the mean of the three be parameters

equaled�0:95. This can be plugged into Equation 3 in combination with ye ¼ 0 for a person with an

average ERS level leading to Fð0� ð�0:95ÞÞ ¼ :83. Thus, the average probability to give an

extreme response equaled 83%. This mirrors the large proportion of extreme responses that was

observed (see also Figure A1). Likewise, the mean of the three bm parameters equaled 1.27, and thus

the probability to give a midpoint response equaled 10% on average (Fð0� 1:27Þ ¼ :10). Note

further that this probability mij is conditional on a nonextreme response, as can be inferred from

Table 1. Furthermore, these probabilities refer to Equations 2–4, that is, to the probabilities of the

three model parameters t, e, and m. These probabilities can, of course, also be used to calculate the

category probabilities according to Equations 7–11. In detail, averaging across all three items and

using an average person with a theta vector equal to 0 leads to e ¼ :83, m ¼ :10 (see above), and

t ¼ Fð0� ð�0:84ÞÞ ¼ :80. Plugging these three values into Equations 7–11 leads to probabilities of

.17, .03, .02, .12, and .66 for Categories 1 to 5. These sum to 1, and they closely resemble to observed

frequencies (see Figure A1).

With respect to the person parameters, standard deviations of syt
¼ 0:66, sye

¼ 1:37, and

sym
¼ 0:63 were observed. Thus, there was considerable variability between persons in, for

example, their tendency to use extreme categories. For example, persons with an ERS level one

standard deviation above and below the mean are expected to have values of ye ¼+1:37.

Again, these values can be plugged into Equation 3 resulting in Fð1:37þ 0:95Þ ¼ :99 and

Fð�1:37þ 0:95Þ ¼ :34, respectively. Thus, the probability to give an extreme response to an

average item ranged from 34% for persons relatively low on ERS to 99% for persons relatively

high on ERS.
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Furthermore, the correlations among the dimensions were estimated as rte ¼ :45, rtm ¼ �:49, and

rem ¼ �:33. The negative correlation between ERS and MRS is a typical finding in response style

research. The substantial correlations between the target trait and response styles are particularly

noteworthy, because such correlations have been found to cause bias (e.g., Plieninger, 2017). In

order to investigate potential bias, the yt parameters from the MCN model and the GRM were

compared. Their correlation equaled .94, and the mean of the absolute differences was 0.21. Thus,

differences between the models were mirrored in different estimates of the persons’ level of orga-

nizational commitment.

In summary, the analyses suggested that response styles were present in the data from Venezuela.

Those response styles could be captured by an IR-tree model, which outperformed a standard

unidimensional model. Furthermore, the results indicated that the estimates from the unidimensional

GRM may be biased by response styles to some extent. This will be discussed further in the

following section on data from multiple countries.

Multiple-Group IR-Tree Model for Data From Multiple Countries. A multiple-group model for 11 coun-

tries was specified to investigate differences in organizational commitment as well as response styles

across countries. The item parameters were set equal across countries—thus assuming strong mea-

surement invariance or no DIF—in order to allow for meaningful comparisons of persons across

countries.1 However, no dispensable restrictions were imposed on the means, variances, and covar-

iances of target trait, ERS, and MRS thus permitting group differences with respect to these

parameters.

Again, the IR-tree model (AIC ¼ 66,200, BIC ¼ 66,950) fit better than the GRM (AIC ¼
67,460, BIC ¼ 67,740). Furthermore, there was considerable heterogeneity of the country-level

parameters. In Figure 5, the estimated latent variances and means are shown. More precisely,
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Figure 5. Country-level parameters as estimated from an IR-tree model, namely (relative) latent means and
latent variances for the three parameters target trait t, extreme response style e, and midpoint response
style.
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relative means are shown (i.e., the lowest country mean level was subtracted from all means) to

facilitate interpretation. With respect to the target trait, the country level of organizational com-

mitment was lowest in Lithuania and highest in New Zealand, and the variances showed consid-

erable heterogeneity across countries as well. Even larger differences in country mean levels were

observed for ERS, with the highest level of ERS observed in Venezuela. Respondents in China or

Lithuania, in contrast, showed rather low levels of ERS and seldom used the Categories 1 and 5

(see also the appendix).

In order to estimate the impact of response styles on substantive conclusions, the country

level means of organizational commitment were compared across the IR-tree model and the

GRM. The rank correlation of the means across models was t ¼ :78 as illustrated in Figure 6.

As expected, a large correction occurred for Venezuela: In the GRM, this country had by far

the largest mean of 0.93. In the IR-tree model, however, the mean equaled 0.22 taking only the

third place.2

Summary

This illustrative example showed that IR-tree models can add value to data analysis in

organizational and also cross-cultural psychology. It was demonstrated how the model para-

meters can be interpreted and how an IR-tree model differs from a standard unidimensional

model. The example also indicated that response styles can have an effect on substantive

conclusions, but it should also be noted that such effects are rather small under many

conditions (e.g., Plieninger, 2017). Herein, notable differences in organizational commitment

after controlling for response styles were found for one out of 11 countries. Moreover, it was

shown that IR-tree models can easily be extended to multiple-group models. Finally, it should

be noted that the examples were handpicked for illustrative purposes. Thus, even though ISSP

2015 is a very large and reliable data set, substantive conclusions should not rely solely on

the presented results.

Discussion

The contribution of the present article is twofold. The first contribution is the development of

guidelines for scholars in organizational research and beyond for developing, applying, and
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Figure 6. Scatterplot of country level means of organizational commitment estimated from both an IR-tree
model and a graded response model (GRM).
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interpreting IR-tree models. Thus, the article serves as a supplement to earlier psychometric work

on IR-tree models (e.g., Böckenholt, 2012; Böckenholt & Meiser, 2017). In more detail, the

guidelines described above enable researchers to select an existing or even develop a new IR-

tree model—by going from a descriptive tree diagram via a set of model equations to the pseudo-

items for estimation. Moreover, the worked example illustrated how parameter estimates and

model fit can be interpreted. Furthermore, it was shown that this interpretation should focus on

the qualitative differences between the model parameters, but not on their relative order in the tree

diagram.

The second contribution is the introduction of the novel class of multiple-group IR-tree models.

These are applicable when data were collected in possibly heterogeneous groups such as organiza-

tions, countries, experimental conditions, or across different time points. Just like multiple-group

IRT models, multiple-group IR-tree models allow one to investigate and establish measurement

invariance across groups. Furthermore, groups can be compared with respect to all latent dimensions

of the IR-tree model (e.g., target trait, ERS, and MRS). Apart from that, note that multiple-group

models are best suited for situations with a few, known groups. Many groups such as dozens of

companies may make working with a multiple-group model cumbersome, and multilevel models

may be an alternative. Furthermore, if the groups are unknown, a latent-class extension may be

required (e.g., Tijmstra et al., 2018).

One potential area for IR-tree models in organizational research is the control of response styles

such as ERS and MRS. Response styles and other sources of method variance are receiving more and

more attention in many areas (e.g., Baumgartner & Steenkamp, 2001; Kam & Meyer, 2015; Moors,

2012; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003), and IR-tree models have already been

successfully applied in this context. For example, Plieninger and Meiser (2014) predicted measures

of academic performance using self-report measures that were controlled for response styles using

an IR-tree model. Likewise, LaHuis et al. (2019) predicted job performance using variables such as

self-reported teamwork or work ethic.

Further promising areas for using IR-tree models are measures that are multidimensional and

result in discrete data (e.g., Likert-type scales, choice data, SJTs). For example, scoring SJTs can be

difficult (e.g., Bergman, Drasgow, Donovan, Henning, & Juraska, 2006; Zu & Kyllonen, 2018), and

IR-tree models might potentially be used to disentangle different dimensions underlying the

responses of a forced-choice SJT. Apart from that, research on choices (e.g., consumer choices)

often involves alternative options that differ along multiple dimensions; IR-tree models and related

accounts (e.g., Böckenholt, 2012; McFadden, 1981) allow to capture this multidimensionality and to

analyze all choices in one model. All this illustrates that IR-tree modeling has become a vibrant topic

in certain areas (e.g., Khorramdel, Jeon, & Wang, 2019), and organizational researchers may benefit

from adding this model class to their toolbox.

In summary, IR-tree models enable us to shed new light on existing research questions, for

instance, about the processes involved in questionnaire responding. Furthermore, they also allow

to ask novel research questions, for example, about multidimensionality in self-report data. In either

case, the present article offers guidance for working with IR-tree models, in both single-group and

multiple-group cases.
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Appendix

Response Distribution of Workers’ Commitment Across Countries

Author Note

This article is accompanied by an OSF repository, which contains the Mplus files of the reported analyses. It is

available from https://osf.io/5tvsq. The author would like to thank Mirka Henninger and Thorsten Meiser for

helpful comments on a previous version of this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or

publication of this article: The publication of this article was funded by the University of Mannheim.

ORCID iD

Hansjörg Plieninger https://orcid.org/0000-0002-4416-300X

United Kingdom Venezuela

Mexico New Zealand Slovenia

Hungary Latvia Lithuania

Australia China Croatia

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

F
re

q
u
en

cy Item

v45

v46

v47

Figure A1. The colored bar plots show, across all respondents within each country, the response distribution
of the three items measuring organizational commitment. Depicted in light gray is the response distribution
averaged across the three items. The response scale ranged from strongly agree (5) to strongly disagree (1).

14 Organizational Research Methods XX(X)

https://osf.io/5tvsq
https://orcid.org/0000-0002-4416-300X
https://orcid.org/0000-0002-4416-300X
https://orcid.org/0000-0002-4416-300X


Notes

1. In substantive research, invariance should be empirically tested (e.g., using model comparisons) as exten-

sively discussed in the general multiple-group literature (e.g., Tay et al., 2015). Herein, invariance was

assumed rather than investigated for the sake of brevity of these illustrative analyses.

1. Note that, strictly speaking, this interpretation is to some degree limited by the identification constraint. In

detail, the means of one country have to be fixed to identify the model (see above), and Australia was

chosen herein (i.e., mg¼1 ¼ 0). However, this choice is absolutely arbitrary but not without consequences.

One could also fix the means of Venezuela, for example. Figuratively speaking, this would shift all points

in Figure 6 to the lower left such that Venezuela took the place of Australia. Then, no correction of

Venezuela’s absolute mean would occur, because it equaled 0 in both models; for all other countries,

however, large upward corrections would occur. Nevertheless, differences between countries would

remain the same, and thus the correction of the rank of Venezuela is not affected by this limitation.
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Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice. Psychological Methods,

17, 665-678. doi:10.1037/a0028111
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