Skip to main content

Advertisement

Log in

Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lichen samples from contrasted environments, influenced by various anthropic activities, were investigated focusing on the contaminant signatures according to the atmospheric exposure typologies. Most of the contaminant concentrations measured in the 27 lichen samples, collected around the industrial harbor of Fos-sur-Mer (France), were moderate in rural and urban environments, and reached extreme levels in industrial areas and neighboring cities (Al up to 6567 mg kg−1, Fe 42,398 mg kg−1, or ΣPAH 1417 μg kg−1 for example). At the same time, a strong heterogeneity was noticed in industrial samples while urban and rural ones were relatively homogeneous. Several metals could be associated to steel industry (Fe, Mn, Cd), road traffic, and agriculture (Sb, Cu, Sn), or to a distinct chemical installation (Mo). As well, PCDFs dominated in industrial samples while PCDDs prevailed in urban areas. The particularities observed supported the purpose of this work and discriminated the contributions of various atmospheric pollution emission sources in lichen samples. A statistical approach based on principal component analysis (PCA) was applied and resolved these potential singularities into specific component factors. Even if a certain degree of mixing of the factors is pointed out, relevant relationships were observed with several atmospheric emission sources. By this methodology, the contribution of industrial emissions to the atmospheric metal, PAH, PCB, and PCDD/F levels was roughly estimated to be 60.2%, before biomass burning (10.2%) and road traffic (3.8%). These results demonstrate that lichen biomonitoring offers an encouraging perspective of spatially resolved source apportionment studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MD, Gottardo C (2012) Measuring lichen specimen characteristics to reduce relative local uncertainties for trace element biomonitoring. Atmos Pollut Res 3(3):325–330. https://doi.org/10.5094/APR.2012.036

    Article  CAS  Google Scholar 

  • Agnan Y, Séjalon-Delmas N, Claustres A, Probst A (2015) Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci Total Environ 529:285–296. https://doi.org/10.1016/j.scitotenv.2015.05.083

    Article  CAS  Google Scholar 

  • Anderson PN, Hites RA (1996) OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30(5):1756–1763. https://doi.org/10.1021/es950765k

    Article  CAS  Google Scholar 

  • Atkinson R (1996) Atmospheric chemistry of PCBs, PCDDs and PCDFs (chap. 6). In: Hester RE, Harrison RM (eds) Issues in environmental science and technology—6. Chlorinated organic micropollutants. The Royal Society of Chemistry, Cambridge (UK), pp 53–72

    Google Scholar 

  • Atkinson R, Arey J (1994) Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Perspect 102(Suppl 4):117–126. https://doi.org/10.1289/ehp.94102s4117

    Article  CAS  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Soares A, Branquinho C (2009) Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Environ Sci Technol 43(20):7762–7769. https://doi.org/10.1021/es901024w

    Article  CAS  Google Scholar 

  • Augusto S, Máguas C, Branquinho C (2013) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environ Pollut 180:330–338. https://doi.org/10.1016/j.envpol.2013.05.019

    Article  CAS  Google Scholar 

  • Augusto S, Pinho P, Santos A, Botelho M, Palma-Oliveira J, Branquinho C (2015) Declining trends of PCDD/Fs in lichens over a decade in a Mediterranean area with multiple pollution sources. Sci Total Environ 508:95–100. https://doi.org/10.1016/j.scitotenv.2014.11.065

    Article  CAS  Google Scholar 

  • Augusto S, Pinho P, Santos A, Botelho M, Palma-Oliveira J, Branquinho C (2016) Tracking the spatial fate of PCDD/F emissions from a cement plant by using lichens as environmental biomonitors. Environ Sci Technol 50(5):2434–2441. https://doi.org/10.1021/acs.est.5b04873

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK, Nayaka S (2009) Lichen as quantitative biomonitors of atmospheric heavy metals in Central India. J Atmos Chem 63(3):235–246. https://doi.org/10.1007/s10874-010-9166-x

    Article  CAS  Google Scholar 

  • Boamponsem LK, de Freitas CR, Williams D (2017) Source apportionment of air pollutants in the Greater Auckland Region of New Zealand using receptor models and elemental levels in the lichen, Parmotrema reticulatum. Atmos Pollut Res 8(1):101–113. https://doi.org/10.1016/j.apr.2016.07.012

    Article  Google Scholar 

  • Boonpeng C, Polyiam W, Sriviboon C, Sangiamdee D, Watthana S, Nimis PL, Boonpragob K (2017) Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex. Nyl.) Hale. Environ Sci Pollut Res 24(13):12393–12404. https://doi.org/10.1007/s11356-017-8893-9

    Article  CAS  Google Scholar 

  • Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci Total Environ 387(1-3):289–300. https://doi.org/10.1016/j.scitotenv.2007.06.033

    Article  CAS  Google Scholar 

  • Christensen ER, Steinnes E, Eggen OA (2018) Anthropogenic and geogenic mass input of trace elements to moss and natural surface soil in Norway. Sci Total Environ 613-614:371–378. https://doi.org/10.1016/j.scitotenv.2017.09.094

    Article  CAS  Google Scholar 

  • Daimari R, Hoque RR, Nayaka S, Upreti DK (2013) Atmospheric heavy metal accumulation in epiphytic lichens and their phorophytes in the Brahmaputra Valley. Asian J Water Environ Pollut 10(4):1–12

    CAS  Google Scholar 

  • de Mendiburu F (2017) Agricolae: statistical procedures for agricultural research. R package version 1.2-8. (URL: https://CRAN.R-project.org/package=agricolae)

  • Demiray AD, Yolcubal I, Akyol NH, Cobanoglu G (2012) Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol Indic 18:632–643. https://doi.org/10.1016/j.ecolind.2012.01.024

    Article  CAS  Google Scholar 

  • Dimashki M, Lim LH, Harrison RM, Harrad S (2001) Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 35(11):2264–2267. https://doi.org/10.1021/es000232y

    Article  CAS  Google Scholar 

  • Domeño C, Blasco M, Sánchez C, Nerín C (2006) A fast extraction technique for extracting polycyclic aromatic hydrocarbons (PAHs) from lichens samples used as biomonitors of air pollution: dynamic sonication versus other methods. Anal Chim Acta 569(1-2):103–112. https://doi.org/10.1016/j.aca.2006.03.053

    Article  Google Scholar 

  • Dominguez-Morueco N, Augusto S, Trabalon L, Pocurull E, Borrull F, Schuhmacher M, Domingo JL, Nadal M (2017) Monitoring PAHs in the petrochemical area of Tarragona County, Spain: comparing passive air samplers with lichen transplants. Environ Sci Pollut Res 24(13):11890–11900. https://doi.org/10.1007/s11356-015-5612-2

    Article  CAS  Google Scholar 

  • Dron J, Chamaret P (2015) Investigating molybdenum emissions from the Lyondell Chimie France industrial site in Fos-sur-Mer. Final report, Institut Ecocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France. (confidential)

  • Dron J, Austruy A, Agnan Y, Ratier A, Chamaret P (2016) Biomonitoring with lichens in the industrialo-portuary zone of Fos-sur-Mer (France): feedback on three years of monitoring at a local collectivity scale. Pollution Atmosphérique 228. (URL: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5392, written in French with abstract and captions in English)

  • European Commission (EC) (2011) Regulation No 1259/2011 of 2 December 2011 amending Regulation No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. (URL: http://data.europa.eu/eli/reg/2011/1259/oj)

  • European Environment Agency (EEA) (2016) Air quality in Europe—2016 report, Copenhagen, Denmark (URL: http://www.eea.europa.eu/publications/air-quality-in-europe-2016)

  • Hissler C, Stille P, Krein A, Geagea ML, Perrone T, Probst J-L, Hoffmann L (2008) Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina. Sci Total Environ 405(1-3):338–344. https://doi.org/10.1016/j.scitotenv.2008.05.029

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2013) In: Straif K, Cohen A, Samet J (eds) Air pollution and cancer, IARC Scientific Publication 161: IARC, Lyon, France

  • Kodnik D, Carniel FC, Licen S, Tolloi A, Barbieri P, Tretiach M (2015) Seasonal variations of PAHs content and distribution patterns in a mixed land use area: a case study in NE Italy with the transplanted lichen Pseudevernia furfuracea. Atmos Environ 113:255–263. https://doi.org/10.1016/j.atmosenv.2015.04.067

    Article  CAS  Google Scholar 

  • Liu H-J, Zhao L-C, Fang S-B, Liu S-W, J-S H, Wang L, Liu X-D, Q-F W (2016) Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China. Sci Rep 6(1):23456. https://doi.org/10.1038/srep23456

    Article  CAS  Google Scholar 

  • Lough GC, Schauer JJ, Park J-S, Shafer MM, DeMinter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39(3):826–836. https://doi.org/10.1021/es048715f

    Article  CAS  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z

    Article  Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (eds) (2002) Monitoring with lichens—monitoring lichens, NATO Science Series - Kluwer Academic Publishers, Dordrecht

  • Occelli F, Cuny M-A, Devred I, Deram A, Quarré S, Cuny D (2013) Étude de l’imprégnation de l’environnement de trois bassins de vie de la région Nord-Pas-de-Calais par les éléments traces métalliques. Pollution Atmosphérique 220. (URL: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=2497, written in French with abstract and captions in English)

  • Occelli F, Bavdek R, Deram A, Hellequin A-P, Cuny M-A, Zwarterook I, Cuny D (2016) Using lichen biomonitoring to assess environmental justice at a neighborhood level in an industrial area of Northern France. Ecol Indic 60:781–788. https://doi.org/10.1016/j.ecolind.2015.08.026

    Article  CAS  Google Scholar 

  • Park H, Lee S-H, Kim M, Kim J-H, Lim HS (2010) Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica. Antarct Sci 22(01):31–38. https://doi.org/10.1017/S0954102009990472

    Article  Google Scholar 

  • Pernigotti D, Belis CA, Spanò L (2016) SPECIEUROPE: the European data base for PM source profiles. Atmos Pollut Res 7(2):307–314. https://doi.org/10.1016/j.apr.2015.10.007

    Article  Google Scholar 

  • Protano C, Owczarek M, Fantozzi L, Guidotti M, Vitali M (2015) Transplanted lichen Pseudovernia furfuracea as a multi-tracer monitoring tool near a solid waste incinerator in Italy: assessment of airborne incinerator-related pollutants. Bull Environ Contam Toxicol 95(5):644–653. https://doi.org/10.1007/s00128-015-1614-5

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. (URL: https://www.R-project.org/)

  • Reimann C, Filzmoser P, Garrett R, Dutter R (eds) (2008) Statistical data analysis explained—applied environmental statistics with R. John Wiley and Sons Ltd., West Sussex. https://doi.org/10.1002/9780470987605

    Google Scholar 

  • Sarrazin L, Diana C, Wafo E, Pichard-Lagadec V, Schembri T, Monod J (2006) Determination of polycyclic aromatic hydrocarbons (PAHs) in marine, brackish, and river sediments by HPLC, following ultrasonic extraction. J Liq Chromatogr Relat Technol 29(1):69–85. https://doi.org/10.1080/10826070500362987

    Article  CAS  Google Scholar 

  • Sternbeck J, Sjödin A, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36(30):4735–4744. https://doi.org/10.1016/S1352-2310(02)00561-7

    Article  CAS  Google Scholar 

  • Stockholm Convention on Persistent Organic Pollutants (2001) United Nations, Stockholm, Sweden. (URL: http://chm.pops.int/Default.aspx)

  • Sylvestre A (2016) Characterization of industrial aerosols and quantification of its contribution in atmospheric PM2.5. Ph.D. Dissertation, Aix-Marseille University, Marseille, France [in French with large English inclusions]

  • Sylvestre A, Mizzi A, Mathiot S, Masson F, Jaffrezzo J-L, Dron J, Mesbah B, Wortham H, Marchand N (2017) Comprehensive chemical characterization of industrial PM2.5: steel plant activities. Atmos Environ 152:180–190. https://doi.org/10.1016/j.atmosenv.2016.12.032

    Article  CAS  Google Scholar 

  • Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241. https://doi.org/10.1093/toxsci/kfl055

    Article  Google Scholar 

  • Van der Wat PF, Forbes PBC (2015) Lichens as biomonitors for organic air pollutants. Trends Anal Chem 64:165–172

    Article  Google Scholar 

  • Veschambre S, Moldovan M, Amouroux D, Santamaria Ulecia JM, Benech B, Etchelecou A, Losno R, Donard, OF-X, Pinel-Raffaitin P (2008) Import of atmospheric trace metal elements in the Aspe valley and Somport tunnel (Pyrénées Atlantiques, France): level of contamination and evaluation of emission sources. Pollution Atmosphérique 198–199 (URL: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=1342, written in French with abstract and captions in English)

  • Viana M, Kuhlbusch T, Querol X, Alastuey A, Harrison R, Hopke P, Winiwarter W, Vallius M, Szidat S, Prévôt A, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda A, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849

    Article  CAS  Google Scholar 

  • Wafo E, Sarrazin L, Diana C, Schembri T, Lagadec V, Monod J-L (2006) Polychlorinated biphenyls and DDT residues distribution in sediments of Cortiou (Marseille, France). Mar Pollut Bull 52(1):104–107. https://doi.org/10.1016/j.marpolbul.2005.09.041

    Article  CAS  Google Scholar 

  • Zhu N, Schramm K-W, Wang T, Henkelmann B, Fu J, Gao Y, Wang Y, Jiang G (2015) Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China. Sci Total Environ 518–519:328–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly thankful to Y. Agnan for technical support. Acknowledgements are also addressed to “La Drôme Laboratoire” for detailed results and analytical protocol regarding PCDD/F analyses, Météo-France for meteorological data through the agreement N° DIRSE/REC/16/02/0, and the Vigueirat natural reserve and harbor authorities and local collectivities for authorizing sampling sites in restricted areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Dron.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(PDF 2134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratier, A., Dron, J., Revenko, G. et al. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns. Environ Sci Pollut Res 25, 8364–8376 (2018). https://doi.org/10.1007/s11356-017-1173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1173-x

Keywords

Navigation