Skip to main content
Log in

Flow-Aware Workload Migration in Data Centers

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In data centers, subject to workloads with heterogeneous (and sometimes short) lifetimes, workload migration is a way of attaining a more efficient utilization of the underlying physical machines. To not introduce performance degradation, such workload migration must take into account not only machine resources, and per-task resource requirements, but also application dependencies in terms of network communication. This paper presents a workload migration model capturing all of these constraints. A linear programming framework is developed allowing accurate representation of per-task resources requirements and inter-task network demands. Using this, a multi-objective problem is formulated to compute a re-allocation of tasks that (1) maximizes the total inter-task throughput, while (2) minimizing the cost incurred by migration and (3) allocating the maximum number of new tasks. A baseline algorithm, solving this multi-objective problem using the \(\varepsilon\)-constraint method is proposed, in order to generate the set of Pareto-optimal solutions. As this algorithm is compute-intensive for large topologies, a heuristic, which computes an approximation of the Pareto front, is then developed, and evaluated on different topologies and with different machine load factors. These evaluations show that the heuristic can provide close-to-optimal solutions, while reducing the solving time by one to two order of magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For instance, the size of RAM plus storage for a virtual machine.

  2. This term is used generically to refer to any forwarding node in the network, regardless of its actually being a router or a switch.

  3. \({\mathbf{z}}^{t-1}\) is obtained by starting from a random state and solving (15) where only the throughput objective is considered, with the additional constraint that all tasks must be allocated.

References

  1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design and Implementation, vol. 2, pp. 273–286. USENIX Association (2005)

  2. Bolla, R., Chiappero, M., Rapuzzi, R., Repetto, M.: Seamless and transparent migration for tcp sessions. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1469–1473. IEEE (2014)

  3. Nadgowda, S., Suneja, S., Bila, N., Isci, C.: Voyager: complete container state migration. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2137–2142. IEEE (2017)

  4. Cheng, D., Jiang, C., Zhou, X.: Heterogeneity-aware workload placement and migration in distributed sustainable datacenters. In: 2014 IEEE 28th International on Parallel and Distributed Processing Symposium, pp. 307–316. IEEE (2014)

  5. Zeng, D., Gu, L., Guo, S.: Cost minimization for big data processing in geo-distributed data centers. In: Zeng, D., Gu, L., Guo, S. (eds.) Cloud Networking for Big Data, pp. 59–78. Springer, Cham (2015)

    Chapter  Google Scholar 

  6. Shrivastava, V., Zerfos, P., Lee, K.-W., Jamjoom, H., Liu, Y.-H., Banerjee, S.: Application-aware virtual machine migration in data centers. In: INFOCOM, 2011 Proceedings IEEE, pp. 66–70. IEEE (2011)

  7. Huang, D., Gao, Y., Song, F., Yang, D., Zhang, H.: Multi-objective virtual machine migration in virtualized data center environments. In: 2013 IEEE International Conference on Communications (ICC), pp. 3699–3704. IEEE (2013)

  8. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 267–280. ACM (2010)

  9. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center traffic: measurements and analysis. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 202–208. ACM (2009)

  10. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

  11. LaCurts, K., Deng, S., Goyal, A., Balakrishnan, H.: Choreo: network-aware task placement for cloud applications. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 191–204. ACM (2013)

  12. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: dynamic flow scheduling for data center networks. NSDI 10, 19–19 (2010)

    Google Scholar 

  13. Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolidation with migration control for virtualized data centers. Future Gener. Comput. Syst. 27, 1027–1034 (2011)

    Article  Google Scholar 

  14. Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient VM scheduling for cloud data centers: exact allocation and migration algorithms. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. IEEE (2013)

  15. Jin, H., Cheocherngngarn, T., Levy, D., Smith, A., Pan, D., Liu, J., Pissinou, N.: Joint host-network optimization for energy-efficient data center networking. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS), pp. 623–634. IEEE (2013)

  16. Liu, N., Dong, Z., Rojas-Cessa, R.: Task and server assignment for reduction of energy consumption in datacenters. In: 2012 11th IEEE International Symposium on Network Computing and Applications (NCA), pp. 171–174. IEEE (2012)

  17. kakadia, D., Kopri, N., Varma, V.: Network-aware virtual machine consolidation for large data centers. In: NDM ’13 Proceedings of the Third International Workshop on Network-Aware Data Management. ACM (6) (2013)

  18. Ahmad, R.W., Gani, A., Hamide, S.H.A., Shiraz, M., Yousafzai, A., Xia, F.: A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J. Netw. Comput. Appl. 52, 11–25 (2015)

    Article  Google Scholar 

  19. Pires, F.L., Báran, B.: Virtual machine placement literature review. arXiv:1506.01509v1. Cited 4 June 2015

  20. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Network-aware virtual machine placement and migration in cloud data centers. In: Bagchi, S. (ed.) Emerging Research in Cloud Distributed Computer Systems, pp. 42–91. IGI Global, Hershey (2015)

    Chapter  Google Scholar 

  21. Usmani, Z., Singh, S.: A survey of virtual machine placement techniques in cloud data center. Procedia Comput. Sci. 78, 491–498 (2016)

    Article  Google Scholar 

  22. Fang, W., Liang, X., Li, S., Chiaraviglio, L., Xiong, N.: VMPlanner: optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers. Comput. Netw. 57(1), 179–196 (2013)

    Article  Google Scholar 

  23. Chen, T., Gao, X., Chen, G.: Optized virtual machine placement with traffic-aware balancing in data ceter networks. Sci. Program. 6, 10 (2016)

    Google Scholar 

  24. Fang, S., Kanagavelu, R., Lee, B.-S., Foh, C.H., Aung, K.M.M.: Power-efficient virtual machine placement and migration in data centers. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1408–1413. IEEE Computer Society (2013)

  25. Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized data center environments. In: 2010 IEEE/ACM International Conference on Green Computing and Communications and 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing, pp. 179–188. IEEE Computer Society (2010)

  26. Xu, J., Fortes, J.A.B.: A multi-objective approach to virtual machine management in datacenters. In: Proceeding ICAC’11 Proceedings of the 8th ACM International Conference on Autonomic Computing, pp. 225–234. ACM, New York (2011)

  27. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pires, F.L., Báran, B.: Multi-objective virtual machine placement with service level agreement. In: 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, pp. 203–210. IEEE Computer Society (2013)

  29. Pires, F.L., Báran, B.: Virtual machine placement. A multi-objective approach. In: Latin American Symposium of Infrastructure, Hadward, and Software, pp. 77–84. IEEE (2013)

  30. Ehrgott, M.: Multicriteria Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  31. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R.: Applications of network optimization. Handb. Oper. Res. Manag. Sci. 7, 1–83 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Laumanns, M., Thiele, L., Zitzler, E.: An adaptive scheme to generate the pareto front based on the epsilon-constraint method. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2005)

  33. Gurobi Optimization Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2017). Accessed 23 Jul 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Desmouceaux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desmouceaux, Y., Toubaline, S. & Clausen, T. Flow-Aware Workload Migration in Data Centers. J Netw Syst Manage 26, 1034–1057 (2018). https://doi.org/10.1007/s10922-018-9452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-018-9452-5

Keywords

Navigation