Skip to main content
Log in

Kinematics/dynamics analysis of novel 3UPUR \({+}\) SP-type hybrid hand with three flexible fingers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel 3UPUR \(+\) SP-type hybrid hand with three flexible fingers is designed. Its prototype is built up, and its characteristics, DoF and constrained wrench are analyzed. Its kinematic formulae for solving DoF, the displacement, velocity, acceleration of the moving links are derived and analyzed. Its dynamic formulae for solving the dynamic active forces and the dynamic constrained wrench are derived. Finally, an analytic example is given to demonstrate the solution of the kinematics and dynamics, and the analytical solutions are verified by simulation model. This paper is aimed at laying a solid theoretical and technical foundation of development of the novel hybrid hand with three flexible fingers and similar hybrid hands with multi-flexible fingers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshikawa, T.: Dynamic hybrid position/force control of robot manipulators—description of hand constraints and calculation of joint driving force. IEEE J. Robot. Autom. RA–3(5), 386–392 (1987)

    Article  Google Scholar 

  2. Chen, F., Zhong, Q., Cannella, F., Sekiyama, K., Fukuda, T.: Hand gesture modeling and recognition for human and robot interactive assembly using hidden Markov models. Int. J. Adv. Robot. Syst. 12, 48 (2015)

    Article  Google Scholar 

  3. Zhang, D.: Parallel Robotic Machine Tools, p. 37. Springer, New York (2010)

    Book  Google Scholar 

  4. Zhang, H., Wang, W., Deng, Z., Zong, G., Zhang, J.: A novel reconfigurable robot for urban search and rescue. Int. J. Adv. Robot. Syst. 3(4), 359–366 (2006)

    Article  Google Scholar 

  5. Wang, W., Zhang, H., Yu, W.: Design and realization of multimobile robot system with docking manipulator. J. Mech. Des. Trans. ASME 132(11), 123–132 (2010)

    Article  Google Scholar 

  6. Mohamed, M.G., Gosselin, C.M.: Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans. Robot. 21(3), 277–287 (2005)

    Article  Google Scholar 

  7. Nuttall, A., Klein, B.: Compliance effects in a parallel jaw gripper. Mech. Mach. Theory 38(12), 1509–1522 (2003)

    Article  MATH  Google Scholar 

  8. Yi, B., Na, H., Lee, J., Hong, Y., Oh, S., Suh, I., Kim, W.: Design of a parallel-type gripper mechanism. Int. J. Robot. Res. 21(7), 661–676 (2002)

    Article  Google Scholar 

  9. Yan, C., Gao, F., Guo, W.: Coordinated kinematic modelling for motion planning of heavy-duty manipulators in an integrated open-die forging centre. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223(10), 1299–1313 (2009)

    Article  Google Scholar 

  10. Zhang, M.T., Goldberg, K.: Designing robot grippers: optimal edge contacts for part alignment. Robotica 25(3), 341–349 (2007)

    Article  Google Scholar 

  11. Zhang, M.T., Goldberg, K.: Gripper point contacts for part alignment. IEEE Trans. Robot. Autom. 18(6), 902–910 (2002)

    Article  Google Scholar 

  12. Pedreño-Molina, J.L., Guerrero-González, A., Calabozo-Moran, J., López-Coronado, J., Gorce, P.: A neural tactile architecture applied to real-time stiffness estimation for a large scale of robotic grasping systems. J. Intell. Robot. Syst. Theory Appl. 49(4), 311–323 (2007)

    Article  Google Scholar 

  13. Ahmed, R., Kenji, I.: New architecture of a hybrid two-fingered micro-nano manipulator hand: optimization and design. Adv. Robot. 22(2–3), 235–260 (2008)

    Google Scholar 

  14. Liu, D., Wang, T., Tang, C., Zhang, F.: A hybrid robot system for CT-guided surgery. Robotica 28(2), 253–258 (2010)

    Article  Google Scholar 

  15. Kawamura, T., Inaguma, N., Nejigane, K., Tani, K., Yamada, H.: Measurement of slip, force and deformation using hybrid tactile sensor system for robot hand gripping an object. Int. J. Adv. Robot. Syst. 10, 83 (2013)

    Article  Google Scholar 

  16. Lu, Y., Wang, P., Hou, Z., Hu, B.: Kinetostatics analysis of a novel 6-DoF 3UPS parallel manipulator with multi-fingers. Mech. Mach. Theory 78(2), 36–50 (2014)

    Article  Google Scholar 

  17. Lu, Y., Dai, Z., Ye, N., Wang, P.: Kinematics/statics analysis of a novel serial-parallel robotic arm with hand. J. Mech. Sci. Technol. 29(10), 4407–4416 (2015)

    Article  Google Scholar 

  18. Lu, Y., Wang, P., Hou, Z., Hu, B.: Coordinative dynamics analysis of a parallel manipulator with three grippers. J. Robot. Autom. 29(2), 184–192 (2014)

    Google Scholar 

  19. Huang, Z.: Theory of Parallel Mechanisms. Springer, New York (2013)

    Book  Google Scholar 

  20. Kong, X.W., Gosselin, C.M.: Type synthesis of 5-DOF parallel manipulators based on screw theory. J. Robot. Syst. 22(10), 535–547 (2005)

    Article  MATH  Google Scholar 

  21. Fang, Y.F., Tsai, L.W.: Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures. Int. J. Robot. Res. 21(9), 799–810 (2002)

    Article  Google Scholar 

  22. Lu, Y., Hu, B.: Unification and simplification of velocity/acceleration of limited-dof parallel manipulators with linear active legs. Mech. Mach. Theory 43(9), 1112–1128 (2008)

    Article  MATH  Google Scholar 

  23. Wu, J., Wang, L.P., Guan, L.W.: A study on the effect of structure parameters on the dynamic characteristics of a PRRRP parallel manipulator. Nonlinear Dyn. 74(1–2), 227–235 (2013)

  24. Li, Y.M., Staicu, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, Y., Shi, Y., Hu, B.: Solving reachable workspace of some parallel manipulators by CAD variation geometry. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222(9), 1773–1781 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge (1) Project (E2016203379) supported by Natural Science Foundation of Hebei, (2) Project (51175447) supported by National Natural Science Foundation of China (NSFC) and (3) Project (JX2014-02) supported by Yanshan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Appendix

Appendix

1. :

Derivation of \({{{\varvec{D}}}}'_{ri1}\)

$$\begin{aligned} {{\varvec{D}}}'_{ri1}= & {} [{\varvec{\delta }}_{ri} \times ({\varvec{\delta }}_{ri} \times {\varvec{R}}_{i1} ){]}'\nonumber \\= & {} {{\varvec{\delta }} }'_{ri} \times ({\varvec{\delta }}_{ri} \times {\varvec{R}}_{i1} )+{\varvec{\delta }}_{ri} \times ({{\varvec{\delta }} }'_{ri} \times {\varvec{R}}_{i1} )+{\varvec{\delta }}_{ri} \nonumber \\&\times ({\varvec{\delta }} _{ri} \times {{\varvec{R}}}'_{i1} ) \nonumber \\= & {} {{\varvec{\delta }} }'_{ri} \times ({\varvec{\delta }}_{ri} \times {\varvec{R}}_{i1} )+{\varvec{\delta }}_{ri} \times ({{\varvec{\delta }} }'_{ri} \times {\varvec{R}}_{i1} ) \nonumber \\= & {} ({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )\times ({\varvec{\delta }}_{ri} \times {\varvec{R}}_{i1} )+{\varvec{\delta }}_{ri} \nonumber \\&\times [({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )\times {\varvec{R}}_{i1} ] \nonumber \\= & {} [({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )\cdot {\varvec{R}}_{i1} ]{\varvec{\delta }}_{ri} -[({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )\cdot {\varvec{\delta }}_{ri} ]{\varvec{R}}_{i1} \nonumber \\&+\,({\varvec{\delta }}_{ri} \cdot {\varvec{R}}_{i1} )({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )-[{\varvec{\delta }}_{ri} \cdot ({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )]{\varvec{R}}_{i1} \nonumber \\= & {} {\varvec{\delta }}_{ri} \left[ {\varvec{R}}_{i1}^T ({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }} _{ri} )\right] +({{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} )({\varvec{\delta }}_{ri} \cdot {\varvec{R}}_{i1} ) \nonumber \\= & {} -{\varvec{\delta }}_{ri} {\varvec{R}}_{i1}^T \hat{{{\varvec{\delta }} }}_{ri} {{\varvec{\theta }} }'_{ri} -\,\left( {\varvec{\delta }}_{ri}^T {\varvec{R}}_{i1} \right) \hat{{{\varvec{\delta }} }}_{ri} {{\varvec{\theta }} }'_{ri} . \end{aligned}$$
(a1)
2. :

Derivation of \({{\varvec{D}}}_i^T {{{{\varvec{\theta }}}}}''_{ri}\)

$$\begin{aligned} {\varvec{D}}_i^T {{\varvec{\theta }} }''_{ri}= & {} {\varvec{D}}_i^T \left[ \frac{{\varvec{D}}_{ri} }{d_{ri} }({{\varvec{o}}}'-\hat{{{\varvec{e}}}}_i {{\varvec{\theta }} }')\right] '\nonumber \\= & {} {\varvec{D}}_i^T \left( \frac{{\varvec{D}}_{ri} }{d_{ri} }\right) '({{\varvec{o}}}'-\hat{{{\varvec{e}}}}_i {{\varvec{\theta }} }')\nonumber \\&+\,\frac{{\varvec{D}}_i^T {\varvec{D}}_{ri} }{d_{ri} }({{\varvec{o}}}'-\hat{{{\varvec{e}}}}_i {{\varvec{\theta }} }'{)}'\nonumber \\= & {} {\varvec{D}}_i^T \frac{{{\varvec{D}}}'_{ri} d_i -{d}'_i {\varvec{D}}_{ri} }{d_{ri}^2 }({{\varvec{o}}}'-\hat{{{\varvec{e}}}}_i {{\varvec{\theta }} }')\nonumber \\&+\,{\varvec{D}}_i^T {\varvec{D}}_{ri} [{{\varvec{o}}}''-{\hat{\varvec{e}}}_i {{\varvec{\theta }} }'' -({{\varvec{\theta }} }'\times {\varvec{e}}_i )\times {{\varvec{\theta }} }']/d_{ri}\nonumber \\= & {} \left\{ {\varvec{D}}_i^T {{\varvec{D}}}'_{ri} ({{\varvec{o}}}' -{\hat{\varvec{e}}}_i {{\varvec{\theta }} }')-{d}'_i {\varvec{D}}_i^T {{\varvec{\theta }} }'_{ri}\right. \nonumber \\&\left. +\,{\varvec{D}}_i^T {\varvec{D}}_{ri} [{{\varvec{o}}}''-{\hat{\varvec{e}}}_i {{\varvec{\theta }} }''-({{\varvec{\theta }} }'\times {\varvec{e}}_i )\times {{\varvec{\theta }} }']\right\} \big /d_{ri}\nonumber \\= & {} \left\{ {\varvec{D}}_i^T {{\varvec{D}}}'_{ri} ({{\varvec{o}}}'-{\hat{\varvec{e}}}_i {{\varvec{\theta }} }')\right. \nonumber \\&-\,{\varvec{\omega }}_{ri}^T {\varvec{D}}_i [({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} )^{T}({{\varvec{o}}}'+{{\varvec{\theta }} }'\times {\varvec{e}}_i )]\nonumber \\&+\,{\varvec{D}}_i^T {\varvec{D}}_{ri} \left( {{\begin{array}{cc} {\varvec{E}}&{}\quad {-{\hat{{{\varvec{e}}}}}_i } \\ \end{array} }}\right) {{\varvec{A}}}\nonumber \\&\left. +\,[({\varvec{D}}_i^T {\varvec{D}}_{ri} )\times {{\varvec{\theta }} }']\cdot ({{\varvec{\theta }} }'\times {\varvec{e}}_i )\right\} \big /d_{ri}. \end{aligned}$$
(a2)
3. :

Derivation of \({{{\theta }}}''_i\)

$$\begin{aligned} {{{\theta }} }''_i= & {} \left[ \frac{{\varvec{D}}_i^T \big ({{\varvec{\theta }} }'-{{\varvec{\theta }} }'_{ri} \big )}{d_i }\right] ' \nonumber \\= & {} \big \{\big [{\varvec{D}}_i^T \big ({{\varvec{\theta }} }'-{{\varvec{\theta }} }'_{ri} \big ){\big ]}'d_i -{d}'_i {\varvec{D}}_i^T \big ({{\varvec{\theta }} }'-{{\varvec{\theta }} }'_{ri} \big )\big \}/d_i ^{2} \nonumber \\= & {} \big [\big ({\varvec{D}}_i^T\big )'\big ({{\varvec{\theta }} }'-{\varvec{J}}_{{{\theta }} ri} {\varvec{V}}\big )+{\varvec{D}}_i^T \big ({{\varvec{\theta }} }''-{{\varvec{\theta }} }''_{ri} \big ) \nonumber \\&-\,\big ({{\varvec{D}}}'_i \cdot {\varvec{R}}_i +{\varvec{D}}_i \cdot {{\varvec{R}}}'_i \big ){{{\theta }} }'_i \big ]/d_i \nonumber \\= & {} \big \{\big ({\varvec{J}}_{{ Di}} {\varvec{V}}\big )^{T}\big ({{\varvec{\theta }} }'-{\varvec{J}}_{{{\theta }} ri} {\varvec{V}}\big )+{\varvec{D}}_i^T {{\varvec{\theta }} }''-{\varvec{D}}_i^T {{\varvec{\theta }} }''_{ri} \nonumber \\&-\,\big [\big ({\varvec{J}}_{{ Di}} {\varvec{V}}\big )^{T}{\varvec{R}}_i +\big (-\hat{{{\varvec{R}}}}_i {{\varvec{\theta }} }'\big )^{T}{\varvec{D}}_i \big ]{{{\theta }} }'_i \big \}/d_i \nonumber \\= & {} \big \{{\varvec{D}}_i^T \left( {{\begin{array}{cc} {\varvec{0}}&{}\quad {\varvec{E}} \\ \end{array} }} \right) {{\varvec{A}}}-{\varvec{D}}_i^T {\varvec{J}}_{{{\theta }} ri} {{\varvec{A}}}+{\varvec{V}}^{T}{\varvec{J}}_{{ D i}}^T \big ({{\varvec{\theta }} }'-{\varvec{J}}_{{{\theta }} ri} {\varvec{V}}\big ) \nonumber \\&+\,{\varvec{V}}^{T}\frac{{\varvec{D}}_i^T {\varvec{R}}_{i1} {\varvec{J}}_{{{ Ri}}2}^T +{\varvec{J}}_{{{ Ri}}2}^T {\varvec{D}}_i {\varvec{D}}_{ri1}^T +{\varvec{D}}_i^T {\varvec{R}}_{i2} {\varvec{J}}_{{{ Dr}}i1}^T }{d_{ri} }\nonumber \\&\left( {{\begin{array}{cc} {\varvec{E}}&{} {-{\hat{\varvec{e}}}_i } \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&+\,\frac{{\varvec{V}}^{T}\big ({\varvec{J}}_{{{\theta }} ri}^T \big )_{3\times 6} {\varvec{D}}_i \big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big )^{T}}{d_{ri} }\left( {{\begin{array}{cc} {{\varvec{E}}_{3\times 3} }&{} {-{\hat{\varvec{e}}}_i } \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&-\,\frac{1}{d_{ri} }{\varvec{V}}^{T}\left( {{\begin{array}{cc} {{{\varvec{0}}}_{{3}\times {3}} }&{} {{{\varvec{0}}}_{{3}\times {3}} } \\ {{{\varvec{0}}}_{{3}\times {3}} }&{} {{\hat{\varvec{e}}}_i s\big ({\varvec{D}}_{ri}^T {\varvec{D}}_i \big )} \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&-\,\big ({\varvec{V}}^{T}{\varvec{J}}_{{{ Di}}}^T {\varvec{R}}_i +\big (-\hat{{{\varvec{R}}}}_i \left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {{\varvec{E}}_{3\times 3} } \\ \end{array} }} \right) {\varvec{V}}\big )^{T}{\varvec{D}}_i \big ){{\varvec{\theta }} }'_i \big \}/d_i \nonumber \\ {{{\theta }} }''_i= & {} \big \{\big [{\varvec{D}}_i^T \left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {{\varvec{E}}_{3\times 3} } \\ \end{array} }} \right) -{\varvec{D}}_i^T \big ({\varvec{J}}_{{{\theta }} ri} \big )_{3\times 6} \big ]{{\varvec{A}}} \nonumber \\&+\,{\varvec{V}}^{T}{\varvec{J}}_{{{ Di}}}^T \big [\left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {{\varvec{E}}_{3\times 3} } \nonumber \\ \end{array} }} \right) -{\varvec{J}}_{{{\theta }} ri} \big ]{\varvec{V}} \nonumber \\&+\,{\varvec{V}}^{T}\frac{1}{d_{ri} }\big [\big ({\varvec{D}}_i^T {\varvec{R}}_{i1} \big )\big ({\varvec{J}}_{{{ Ri}}2}^T \big )_{3\times 6} +\big ({\varvec{J}}_{{{ Ri}}2}^T \big )_{3\times 6} {\varvec{D}}_i {\varvec{D}}_{ri1}^T \nonumber \\&+\,\big ({\varvec{D}}_i^T {\varvec{R}}_{i2} \big )\big ({\varvec{J}}_{{{ Dri}}1}^T \big )_{3\times 6} \big ]\left( {{\begin{array}{cc} {{\varvec{E}}_{3\times 3} }&{} {-{\hat{\varvec{e}}}_i } \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&+\,{\varvec{V}}^{T}\frac{\big ({\varvec{J}}_{{{\theta }} ri}^T \big )_{3\times 6} {\varvec{D}}_i \big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big )^{T}}{d_{ri} }\left( {{\begin{array}{cc} {{\varvec{E}}_{3\times 3} }&{} {-{\hat{\varvec{e}}}_i } \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&-\,\frac{1}{d_{ri} }{\varvec{V}}^{T}\left( {{\begin{array}{cc} {{{\varvec{0}}}_{{3}\times {3}} }&{}\quad {{{\varvec{0}}}_{{3}\times {3}} } \\ {{{\varvec{0}}}_{{3}\times {3}} }&{}\quad {{\hat{\varvec{e}}}_i s\big ({\varvec{D}}_{ri}^T {\varvec{D}}_i \big )} \\ \end{array} }} \right) {\varvec{V}} \nonumber \\&-\,{\varvec{V}}^{T}\big [{\varvec{J}}_{{{ Di}}}^T {\varvec{R}}_i +\left( {{\begin{array}{cc} {\varvec{0}}&{}\quad {\varvec{E}} \\ \end{array} }} \right) ^{T}\hat{{{\varvec{R}}}}_i {\varvec{D}}_i \big ]{\varvec{J}}_{{{\theta }} i} {\varvec{V}}\big \}\,/d_i . \end{aligned}$$
(a3)
4. :

Derivation of \({{\varvec{W}}}_{{i}}^{\prime \prime }\)

$$\begin{aligned}&{\varvec{R}}_i \times \big [{\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]\nonumber \\&\quad =\big [{\varvec{R}}_i \cdot \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]-\big ({\varvec{R}}_i \cdot {\varvec{R}}_i \big )\big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\nonumber \\&\quad ={\varvec{e}}_i -{\varvec{e}}_{Wi} ,\nonumber \\&{{\varvec{e}}}'_{Wi} ={{\varvec{W}}}'_i -{{\varvec{o}}}'\nonumber \\&\quad ={{\varvec{\theta }}}'\times {{\varvec{e}}}_{Wi} -{{{\theta }} }'_i {\varvec{R}}_i \times \big ( {\varvec{e}}_{Wi}-{\varvec{e}}_i \big ), \nonumber \\&{\varvec{W}}_i ^{\prime \prime }=\big [{{\varvec{o}}}'+{{\varvec{\theta }} }'\times {\varvec{e}}_{Wi} -{{{\theta }} }'_i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]'\nonumber \\&\quad ={{\varvec{o}}}''+{{\varvec{\theta }} }''\times {\varvec{e}}_{Wi} +{{\varvec{\theta }} }'\times {{\varvec{e}}}'_{Wi} -{{\varvec{\theta }} }''_i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\nonumber \\&\quad \quad -\,{{{\theta }} }'_i {{\varvec{R}}}'_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )-{{{\theta }} }'_i {\varvec{R}}_i \times {{{\varvec{l}}}}'_{Wi}\nonumber \\&\quad ={{\varvec{o}}}''+{{\varvec{\theta }} }''\times {\varvec{e}}_{Wi} -{{\varvec{\theta }} }''_i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\nonumber \\&\quad \quad +\,{{\varvec{\theta }} }'\times \big [{{\varvec{\theta }} }'\times {\varvec{e}}_{Wi} -\omega _i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]\nonumber \\&\quad \quad -\,\omega _i \big ({{\varvec{\theta }} }'\times {\varvec{R}}_i \big ) \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\nonumber \\&\quad \quad -\,\omega _i {\varvec{R}}_i \times \big [\big ({{\varvec{\theta }} }' -{\varvec{R}}_i {{{\theta }} }'_i \big )\times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]\nonumber \\&\quad ={{\varvec{o}}}''+{{\varvec{\theta }} }''\times {\varvec{e}}_{Wi} +{{\varvec{\theta }} }'\times \big ({{\varvec{\theta }} }'\times {\varvec{e}}_{Wi} \big )\nonumber \\&\quad \quad -\,{\theta }'_i {\varvec{\omega }} \times \big [{\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]-{\theta }''_i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\nonumber \\&\quad \quad -\,{{{\theta }} }'_i \big ({{\varvec{\theta }} }'\times {\varvec{R}}_i \big ) \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )-{{{\theta }} }'_i {\varvec{R}}_i \times \big [{{\varvec{\theta }} }'\nonumber \\&\quad \quad \times \, \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]\nonumber \\&\quad \quad +\,{{{\theta }} }'_i {\varvec{R}}_i \times \big [{\varvec{R}}_i {{{\theta }} }'_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ]\nonumber \\&\quad ={{\varvec{o}}}''-\hat{{{{\varvec{e}}}}}_{Wi} {{\varvec{\theta }} }''-{{{\theta }} }''_i {\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )+{{\varvec{\theta }} }'\nonumber \\&\quad \quad \times \, \big ({{\varvec{\theta }} }'\times {\varvec{e}}_{Wi} \big )\nonumber \\&\quad \quad -\,{{{\theta }} }'_i {{{\theta }} }'_i \big ({{\varvec{e}}}_{Wi} -{{\varvec{e}}}_i \big )-2{{{\theta }} }'_i {{\varvec{\theta }} }'\times \big [{\varvec{R}}_i \times \big ({\varvec{e}}_{Wi} -{\varvec{e}}_i \big )\big ].\nonumber \\ \end{aligned}$$
(a4)
5. :

Derivation of \(l_i^{\prime \prime }\)

Some items are represented as follows:

$$\begin{aligned}&d_{ri} ={\varvec{r}}_i \cdot \big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big ),\quad {\varvec{D}}_i ={\varvec{R}}_{i3} \times {\varvec{R}}_{i4} ,\quad \nonumber \\&d_i ={\varvec{D}}_i \cdot {\varvec{R}}_i ,\quad d_{li} ={{{\varvec{l}}}}_i \cdot \big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big ), \nonumber \\&{\varvec{D}}_{ri1} ={\varvec{\delta }}_{ri} \times \big ({\varvec{\delta }}_{ri} \times {\varvec{R}}_{i1} \big )=\hat{{{\varvec{\delta }} }}_{ri}^2 {\varvec{R}}_{i1} , \nonumber \\&{\varvec{D}}_{ri1}^T ={\varvec{R}}_{i1}^T \hat{{{\varvec{\delta }} }}_{ri}^2 ,\quad {\varvec{D}}_{ri} =-\big ({\varvec{R}}_{i1} {\varvec{R}}_{i2}^T +{\varvec{R}}_{i2} {\varvec{D}}_{ri1}^T \big ), \nonumber \\&{\varvec{D}}_{li1} ={\varvec{\delta }}_{li} \times \big ({\varvec{\delta }}_{li} \times {\varvec{R}}_{i1} \big )=\hat{{{\varvec{\delta }} }}_{li}^2 {\varvec{R}}_{i1} , \nonumber \\&{\varvec{D}}_{li1}^T ={\varvec{R}}_{i1}^T \hat{{{\varvec{\delta }} }}_{li}^2 ,\quad {\varvec{D}}_{li} =-\big ({\varvec{R}}_{i1} {\varvec{R}}_{i2}^T +{\varvec{R}}_{i2} {\varvec{D}}_{li1}^T \big ), \end{aligned}$$
(a5)
$$\begin{aligned}&\big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big )'={\varvec{R}}_{i1} \times \big ({{{\theta }} }'_{ri1} {\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big ) \nonumber \\&\quad ={{{\theta }} }'_{ri1} \big [\big ({\varvec{R}}_{i1} \cdot {\varvec{R}}_{i2} \big ){\varvec{R}}_{i1} -\big ({\varvec{R}}_{i1} \cdot {\varvec{R}}_{i1} \big ){\varvec{R}}_{i2} \big ] \nonumber \\&\quad =-{\theta }'_{ri1} {\varvec{R}}_{i2} , \nonumber \\&{d}'_{ri} =\big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big )^{T}\big ({{\varvec{o}}}'+{{\varvec{\theta }} }'\times {\varvec{e}}_i \big ), \nonumber \\&{d}'_{li} =\big [{{{l}}}'_i {\varvec{\delta }}_{li} +{{l}}_i \big ({{\varvec{\theta }} }'_{li} \times {\varvec{\delta }}_{li} \big )\big ]\cdot \big ({\varvec{R}}_{i1} \times {\varvec{R}}_{i2} \big ), \nonumber \\&{{\varvec{\delta }} }'_{ri} ={{\varvec{\theta }} }'_{ri} \times {\varvec{\delta }}_{ri} ,\nonumber \\&{{l}}_i ^{\prime \prime } =\big ({{{\varvec{b}}}}'_{i2} \cdot {\varvec{\delta }}_{li} \big )'={{{\varvec{b}}}}''_{i2} \cdot {\varvec{\delta }}_{li} +{{{\varvec{b}}}}'_{i2} \cdot {{\varvec{\delta }} }'_{li} \nonumber \\&\quad ={{\varvec{o}}}''\cdot {\varvec{\delta }}_{li} +\big ({{\varvec{\theta }} }''\times {\varvec{e}}_{i2} \big )\cdot {\varvec{\delta }} _{li} -{{{\theta }} }''_i \big ({\varvec{R}}_i \times {{{\varvec{l}}}}_{hi} \big )\cdot {\varvec{\delta }}_{li} \nonumber \\&\qquad +\,\big [{{\varvec{\theta }} }'\times \big ({{\varvec{\theta }} }'\times {\varvec{e}}_{i2} \big )\big ]\cdot {\varvec{\delta }}_{li} -{{{\theta }} }'_i {{{\theta }} }'_i {{{\varvec{l}}}}_{hi} \cdot {\varvec{\delta }}_{li} \nonumber \\&\qquad -\,2{{{\theta }} }'_i \big [{{\varvec{\theta }} }'\times \big ({\varvec{R}}_i \times {\varvec{l}}_{hi} \big )\big ]\cdot {\varvec{\delta }}_{li} +{{{\varvec{b}}}}'_{i2} \cdot \big ({{\varvec{\theta }} }'_{li} \times {\varvec{\delta }}_{li} \big ) \nonumber \\&\quad ={\varvec{\delta }}_{li}^T {{\varvec{o}}}''-{\varvec{\delta }}_{li}^T \hat{{{\varvec{e}}}}_{i2} {{\varvec{\theta }} }''+{\varvec{\delta }}_{li}^T \hat{{{{\varvec{l}}}}}_{hi} {\varvec{R}}_i {{{\theta }} }''_i \nonumber \\&\qquad +\,\big ({\varvec{\delta }}_{li} \times {{\varvec{\theta }} }'\big )\cdot \big ({{\varvec{\theta }} }'\times {\varvec{e}}_{i2} \big )-{{\varvec{\theta }}}^{\prime T}_i {\varvec{\delta }}_{li}^T {{{\varvec{l}}}}_{hi} {{{\theta }} }'_i \nonumber \\&\qquad -\,2{{\varvec{\theta }}}^{\prime T}_i \big ({\varvec{\delta }}_{li} \times {{\varvec{\theta }} }'\big )\cdot \big ({\varvec{R}}_i \times {{{\varvec{l}}}}_{hi} \big )-{{\varvec{v}}}_{bi2}^T {{\varvec{G}}}_i {{{\varvec{b}}}}'_{i2} \nonumber \\&\qquad ={\varvec{\delta }}_{li}^T \left( {{\begin{array}{cc} {{\varvec{E}}}&{}\quad {-\hat{{{\varvec{e}}}}_{i2} } \\ \end{array} }} \right) {{\varvec{A}}}+{\varvec{\delta }}_{li}^T \hat{\varvec{l}}_{hi} {\varvec{R}}_i {{{\theta }} }''_i \nonumber \\&\qquad -\,\big (\hat{{{\varvec{\delta }} }}_{li} {{\varvec{\theta }} }'\big )^{T}\big (\hat{{{\varvec{e}}}}_{i2} {{\varvec{\theta }} }'\big )-\big ({{\varvec{J}}}_{{{\theta i}}} {{\varvec{V}}}\big )^{T}{\varvec{\delta }}_{li}^T {\varvec{l}}_{hi} {{\varvec{J}}}_{{{\theta i}}} {{\varvec{V}}} \nonumber \\&\qquad +\,2\big ({{\varvec{J}}}_{{{\theta i}}} {{\varvec{V}}}\big )^{T}\big (\hat{\varvec{l}}_{hi} {\varvec{R}}_i \big )^{T}\big (\hat{{{\varvec{\delta }}}}_{li} {{\varvec{\theta }} }'\big )-{{{\varvec{b}}}}^{\prime T}_{i2} {{\varvec{G}}}_i {{{\varvec{b}}}}'_{i2} \nonumber \\&\quad ={\varvec{\delta }}_{li}^T \left( {{\begin{array}{cc} {{\varvec{E}}}&{}\quad {-\hat{{{\varvec{e}}}}_{i2} } \\ \end{array} }} \right) {{\varvec{A}}} \nonumber \\&\qquad +\,\big ({\varvec{\delta }}_{li}^T \hat{\varvec{l}}_{hi} {\varvec{R}}_i \big )\big ({{\varvec{J}}}_{{{\theta i}}} {{\varvec{A}}}+{{\varvec{V}}}^{T}{{\varvec{h}}}_{{{\theta i}}} {{\varvec{V}}}\big )+{{\varvec{\theta }} }'^{T}\hat{{{\varvec{\delta }} }}_{li} \hat{{{\varvec{e}}}}_{i2} {{\varvec{\theta }} }' \nonumber \\&\qquad -\,{{\varvec{V}}}^{T}{{\varvec{J}}}_{{{\theta i}}}^T {\varvec{\delta }}_{li}^T {\varvec{l}}_{hi} {{\varvec{J}}}_{{{\theta i}}} {{\varvec{V}}} \nonumber \\&\qquad -\,2{{\varvec{V}}}^{T}{{\varvec{J}}}_{{{\theta i}}}^T {\varvec{R}}_i ^{T}\hat{\varvec{l}}_{hi} \left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {\hat{{{\varvec{\delta }} }}_{li} } \\ \end{array} }} \right) \nonumber \\&\qquad {{\varvec{V}}}-{{\varvec{V}}}^{T}{{\varvec{J}}}_{bi2}^T {{\varvec{G}}}_i {{\varvec{J}}}_{bi2} {{\varvec{V}}}, \end{aligned}$$
$$\begin{aligned}&{{l}}_i ^{\prime \prime }={\varvec{\delta }}_{li}^T \big [\left( {{\begin{array}{cc} {{{\varvec{E}}}_{3\times 3} }&{} {-\hat{{{\varvec{e}}}}_{i2} } \\ \end{array} }} \right) +\hat{\varvec{l}}_{hi} {\varvec{R}}_i {{\varvec{J}}}_{{{\theta i}}} \big ]{{\varvec{A}}} \nonumber \\&\qquad +\,{{\varvec{V}}}^{T}\big ({\varvec{\delta }}_{li}^T \hat{\varvec{l}}_{hi} {\varvec{R}}_i \big ){{\varvec{h}}}_{{{\theta i}}} {{\varvec{V}}}+{{\varvec{V}}}^{T}\left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {{{\varvec{0}}}_{3\times 3} } \\ {{{\varvec{0}}}_{3\times 3} }&{}\quad {\hat{{{\varvec{\delta }} }}_{li} \hat{{{\varvec{e}}}}_{i2} } \\ \end{array} }} \right) {{\varvec{V}}} \nonumber \\&\qquad -\,{{\varvec{V}}}^{T}{{\varvec{J}}}_{{\varvec{\theta }} i}^T {\varvec{\delta }}_{li}^T {\varvec{l}}_{hi} {{\varvec{J}}}_{{{\theta i}}} {{\varvec{V}}}-2{{\varvec{V}}}^{T}{{\varvec{J}}}_{{{\theta i}}}^T {\varvec{R}}_i^T \hat{\varvec{l}}_{hi}\nonumber \\&\qquad \left( {{\begin{array}{cc} {{{\varvec{0}}}_{3\times 3} }&{}\quad {\hat{{{\varvec{\delta }} }}_{li} } \\ \end{array} }} \right) {{\varvec{V}}} \nonumber \\&\qquad -\,{{\varvec{V}}}^{T}{{\varvec{J}}}_{bi2}^T {{\varvec{G}}}_i {{\varvec{J}}}_{bi2} {{\varvec{V}}}, \nonumber \\ {{\varvec{G}}}_i= & {} {\hat{{{\varvec{\delta }} }}_{li} {\varvec{D}}_{li} }/{d_{li} ,}\quad \big (i=1,2,3\big ). \end{aligned}$$
(a6)
6. :

Simulation mechanism of novel hybrid hand and its dynamics simulation

See Figs. 6, 7 and 8.

Fig. 6
figure 6

Simulation mechanism of novel hybrid hand

Fig. 7
figure 7

Dynamics simulation of novel hybrid hand

Fig. 8
figure 8

A block model of novel hybrid hand before (a) and after (b) grasping object

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, P. & Ye, N. Kinematics/dynamics analysis of novel 3UPUR \({+}\) SP-type hybrid hand with three flexible fingers. Nonlinear Dyn 91, 1127–1144 (2018). https://doi.org/10.1007/s11071-017-3935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3935-x

Keywords

Navigation