Skip to main content

Advertisement

Log in

Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther. 2017;7(1):5–19. https://doi.org/10.1007/s13555-016-0165-y.

    Article  Google Scholar 

  2. Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, Prado AH, Gremião MPD, et al. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: a review. Biomed Res Int. 2015;2015:1–22. https://doi.org/10.1155/2015/841817.

    Article  Google Scholar 

  3. Naves LB, Dhand C, Venugopal JR, Rajamani L, Ramakrishna S, Almeida L. Nanotechnology for the treatment of melanoma skin cancer. Prog Biomaterials. 2017;6(1-2):1–14. https://doi.org/10.1007/s40204-017-0063-0.

    Article  Google Scholar 

  4. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8. https://doi.org/10.1038/nbt.1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barry BW. Dermatological formulations: percutaneous absorption. vol 18. New York: Marcel Dekker; 1983.

  6. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4):203–22. https://doi.org/10.1016/j.ejps.2008.05.002.

    Article  PubMed  Google Scholar 

  7. Pirot F, Berardesca E, Kalia YN, Singh M, Maibach HI, Guy RH. Stratum corneum thickness and apparent water diffusivity: facile and noninvasive quantitation in vivo. Pharm Res. 1998;15(3):492–4. https://doi.org/10.1023/A:1011996903513.

    Article  CAS  PubMed  Google Scholar 

  8. Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci. 2017;106(2):423–45. https://doi.org/10.1016/j.xphs.2016.10.001.

  9. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1):164–72. https://doi.org/10.1016/j.ijpharm.2010.06.034.

    Article  PubMed  Google Scholar 

  10. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et Biophysica Acta (BBA) Biomembranes. 1992;1104(1):226–32. https://doi.org/10.1016/0005-2736(92)90154-E.

    Article  CAS  Google Scholar 

  11. Aghazadeh-Habashi A, Yang Y, Tang K, Lőbenberg R, Doschak MR. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures. Drug Deliv Transl Res. 2015;5(6):540–51. https://doi.org/10.1007/s13346-015-0257-8.

    Article  CAS  PubMed  Google Scholar 

  12. Montanari J, Maidana C, Esteva MI, Salomon C, Morilla MJ, Romero EL. Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J Control Release. 2010;147(3):368–76. https://doi.org/10.1016/j.jconrel.2010.08.014.

    Article  CAS  PubMed  Google Scholar 

  13. Hernández IP, Montanari J, Valdivieso W, Morilla MJ, Romero EL, Escobar P. In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. J Photochem Photobiol B Biol. 2012;117:157–63. https://doi.org/10.1016/j.jphotobiol.2012.09.018.

    Article  Google Scholar 

  14. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1):233–42. https://doi.org/10.1016/j.ijpharm.2007.11.037.

    Article  CAS  PubMed  Google Scholar 

  15. Klein E, Stoll HL, Milgrom H, Helm F, Walker MJ. Tumors of the skin. XII. Topical 5-fluorouracil for epidermal neoplasms. J Surg Oncol. 1971;3(3):331–49. https://doi.org/10.1002/jso.2930030314.

    Article  CAS  PubMed  Google Scholar 

  16. Cullen SI. Topical fluorouracil therapy for precancers and cancers of the skin. J Am Geriatr Soc. 1979;27(12):529–35.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KY, Jang GH, Byun CH, Jeun M, Searson PC, Lee KH. Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications. Biosci Rep. 2017;37(3):BSR20170199. https://doi.org/10.1042/BSR20170199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin S, Zhao Y, Nel AE. Zebrafish: an in vivo model for nano EHS studies. Small. 2013;9(9–10):1608–18. https://doi.org/10.1002/smll.201202115.

    Article  CAS  PubMed  Google Scholar 

  19. Montanari J, Vera M, Mensi E, Morilla M, Romero E. Nanoberries for topical delivery of antioxidants. J Cosmet Sci. 2012;64(6):469–81.

    Google Scholar 

  20. Fry DW, White JC, Goldman ID. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978;90(2):809–15. https://doi.org/10.1016/0003-2697(78)90172-0.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104(1):10–4. https://doi.org/10.1016/0003-2697(80)90269-9.

    Article  CAS  PubMed  Google Scholar 

  22. Xu D, Zhang J, Cao Y, Wang J, Xiao J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT- Food Sci Technol. 2016;66:590–7. https://doi.org/10.1016/j.lwt.2015.11.002.

    Article  CAS  Google Scholar 

  23. Anibal DE, Arroyo J, Bernik DL. Interfacial properties of liposomes as measured by fluorescence and optical probes. Methods Enzymol. 2003;367:213.

    Article  Google Scholar 

  24. Lelkes PI, Miller IR. Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J Membr Biol. 1980;52(1):1–15. https://doi.org/10.1007/BF01869001.

    Article  CAS  PubMed  Google Scholar 

  25. Bernik D, Disalvo E. Determination of the dimerization constant of merocyanine 540 at the membrane interface of lipid vesicles in the gel state. Chem Phys Lipids. 1996;82(2):111–23. https://doi.org/10.1016/0009-3084(96)02568-6.

    Article  CAS  Google Scholar 

  26. Parasassi T, De Stasio G, Ravagnan G, Rusch R, Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991;60(1):179–89. https://doi.org/10.1016/S0006-3495(91)82041-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollmann A, Delfederico L, De Antoni G, Semorile L, Disalvo EA. Interaction of bacterial surface layer proteins with lipid membranes: synergysm between surface charge density and chain packing. Colloids Surf B: Biointerfaces. 2010;79(1):191–7. https://doi.org/10.1016/j.colsurfb.2010.03.046.

    Article  CAS  PubMed  Google Scholar 

  28. Marsanasco M, Márquez AL, Wagner JR, Chiaramoni NS, Alonso SV. Bioactive compounds as functional food ingredients: characterization in model system and sensory evaluation in chocolate milk. J Food Eng. 2015;166:55–63. https://doi.org/10.1016/j.jfoodeng.2015.05.007.

    Article  CAS  Google Scholar 

  29. Montanari J, Perez A, Di Salvo F, Diz V, Barnadas R, Dicelio L, et al. Photodynamic ultradeformable liposomes: design and characterization. Int J Pharm. 2007;330(1):183–94. https://doi.org/10.1016/j.ijpharm.2006.11.015.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison SM, Barry BW, Dugard PH. Effects of freezing on human skin permeability. J Pharm Pharmacol. 1984;36(4):261–2. https://doi.org/10.1111/j.2042-7158.1984.tb04363.x.

    Article  CAS  PubMed  Google Scholar 

  31. Schaefer U, Loth H. An ex-vivo model for the study of drug penetration into human skin. Pharm Res. 1996;13(366):b24.

    Google Scholar 

  32. Bichara D, Calcaterra NB, Arranz S, Armas P, Simonetta SH. Set-up of an infrared fast behavioral assay using zebrafish (Danio rerio) larvae, and its application in compound biotoxicity screening. J Appl Toxicol. 2014;34(2):214–9. https://doi.org/10.1002/jat.2856.

    Article  CAS  PubMed  Google Scholar 

  33. Calienni MN, Feas DA, Igartúa DE, Chiaramoni NS, del Valle Alonso S, Prieto MJ. Nanotoxicological and teratogenic effects: a linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol Appl Pharmacol. 2017;337:1–11. https://doi.org/10.1016/j.taap.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  34. Igartua DE, Calienni MN, Feas DA, Chiaramoni NS, Valle Alonso SD, Prieto MJ. Development of nutraceutical emulsions as Risperidone delivery systems: characterization and toxicological studies. J Pharm Sci. 2015;104(12):4142–52. https://doi.org/10.1002/jps.24636.

    Article  CAS  PubMed  Google Scholar 

  35. Feas DA, Igartúa DE, Calienni MN, Martinez CS, Pifano M, Chiaramoni NS et al. Nutraceutical emulsion containing valproic acid (NE-VPA): a drug delivery system for reversion of seizures in zebrafish larvae epilepsy model. J Pharm Investig. 2017:1–9. https://doi.org/10.1007/s40005-017-0316-x.

  36. Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan Lab® Expert analysis of the stability of Ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B: Biointerfaces. 2009;72(1):155–60. https://doi.org/10.1016/j.colsurfb.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  37. Cosco D, Paolino D, Maiuolo J, Di Marzio L, Carafa M, Ventura CA, et al. Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int J Pharm. 2015;489(1):1–10. https://doi.org/10.1016/j.ijpharm.2015.04.056.

    Article  CAS  PubMed  Google Scholar 

  38. López Medrano F, Sánchez Muñoz A, Sánchez Sánchez V, Costa Pérez-Herrero JR. Cardiotoxicidad por 5-fluorouracilo: ¿isquemia o toxicidad miocárdica? Rev Clin Esp. 2001;201(2):106–10. https://doi.org/10.1016/S0014-2565(01)71381-1.

    Article  PubMed  Google Scholar 

  39. El Maghraby GM, Williams AC, Barry BW. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol. 2001;53(8):1069–77. https://doi.org/10.1211/0022357011776450.

    Article  PubMed  Google Scholar 

  40. Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, et al. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005;291(1):79–86. https://doi.org/10.1016/j.ijpharm.2004.07.045.

    Article  CAS  PubMed  Google Scholar 

  41. Kaiser N, Kimpfler A, Massing U, Burger A, Fiebig H, Brandl M, et al. 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. Int J Pharm. 2003;256(1):123–31. https://doi.org/10.1016/S0378-5173(03)00069-3.

    Article  CAS  PubMed  Google Scholar 

  42. Elmeshad A, Mortazavi S, Mozafari M. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J Liposome Res. 2014;24(1):1–9. https://doi.org/10.3109/08982104.2013.810644.

    Article  CAS  PubMed  Google Scholar 

  43. Elorza B, Elorza M, Frutos G, Chantres J. Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods: study of drug release. Biochim Biophys Acta Biomembr. 1993;1153(2):135–42. https://doi.org/10.1016/0005-2736(93)90398-J.

    Article  CAS  Google Scholar 

  44. El Maghraby GM, Campbell M, Finnin BC. Mechanisms of action of novel skin penetration enhancers: phospholipid versus skin lipid liposomes. Int J Pharm. 2005;305(1):90–104. https://doi.org/10.1016/j.ijpharm.2005.08.016.

    Article  PubMed  Google Scholar 

  45. Postigo F, Mora M, De Madariaga M, Nonell S, Sagrista M. Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements. Int J Pharm. 2004;278(2):239–54. https://doi.org/10.1016/j.ijpharm.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  46. Chiaramoni NS, Speroni L, Taira MC. Alonso SdV. Liposome/DNA systems: correlation between association, hydrophobicity and cell viability. Biotechnol Lett. 2007;29(11):1637–44. https://doi.org/10.1007/s10529-007-9454-y.

    Article  CAS  PubMed  Google Scholar 

  47. Hirsch-Lerner D, Barenholz Y. Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochim Biophys Acta. 1999;1461(1):47–57. https://doi.org/10.1016/S0005-2736(99)00145-5.

    Article  CAS  PubMed  Google Scholar 

  48. Parasassi T, Gratton E. Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc. 1995;5(1):59–69. https://doi.org/10.1007/BF00718783.

    Article  CAS  PubMed  Google Scholar 

  49. Bagatolli LA. To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta. 2006;1758(10):1541–56. https://doi.org/10.1016/j.bbamem.2006.05.019.

    Article  CAS  PubMed  Google Scholar 

  50. Lopes S, Simeonova M, Gameiro P, Rangel M, Ivanova G. Interaction of 5-fluorouracil loaded nanoparticles with 1, 2-dimyristoyl-sn-glycero-3-phosphocholine liposomes used as a cellular membrane model. J Phys Chem B. 2011;116(1):667–75. https://doi.org/10.1021/jp210088n.

    Article  PubMed  Google Scholar 

  51. El Maghraby G, Williams A, Barry B. Drug interaction and location in liposomes: correlation with polar surface areas. Int J Pharm. 2005;292(1):179–85. https://doi.org/10.1016/j.ijpharm.2004.11.037.

    Article  PubMed  Google Scholar 

  52. Srivastava R, Shankar M, Tandon A, Nagappa A. Liquid membrane phenomena in anticancer drugs. Studies on 5-fluorouracil and its derivatives. Int J Pharm. 1987;38(1–3):239–45. https://doi.org/10.1016/0378-5173(87)90120-7.

    Article  CAS  Google Scholar 

  53. Yoshii N, Okamura E. Kinetics of membrane binding and dissociation of 5-fluorouracil by pulsed-field-gradient 19F NMR. Chem Phys Lett. 2009;474(4):357–61. https://doi.org/10.1016/j.cplett.2009.04.078.

    Article  CAS  Google Scholar 

  54. Okamura E, Yoshii N. Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes. J Chem Phys. 2008;129(21):12B602.

    Article  Google Scholar 

  55. van den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int J Pharm. 2001;217(1):13–24. https://doi.org/10.1016/S0378-5173(01)00576-2.

    Article  PubMed  Google Scholar 

  56. Cosco D, Paolino D, Maiuolo J, Di Marzio L, Carafa M, Ventura CA, et al. Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int J Pharm. 2015;489(1):1–10. https://doi.org/10.1016/j.ijpharm.2015.04.056.

    Article  CAS  PubMed  Google Scholar 

  57. Cevc G. Material transport across permeability barriers by means of lipid vesicles. Handb Biol Phys. 1995;1:465–90.

    Article  Google Scholar 

  58. Singh BN, Singh RB, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm. 2005;298(1):98–107. https://doi.org/10.1016/j.ijpharm.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta RR, Jain SK, Varshney MAOT. Water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids Surf B: Biointerfaces. 2005;41(1):25–32. https://doi.org/10.1016/j.colsurfb.2004.09.008.

    Article  CAS  PubMed  Google Scholar 

  60. Bucci PL, Prieto MJ, Milla L, Calienni MN, Martínez L, Alonso S, et al. Skin penetration and UV-damage prevention by nanoberries. J Cosmet Dermatol. 2017; https://doi.org/10.1111/jocd.12436.

  61. Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Calis S, Simonoska M, Hincal AA. 5-Fluorouracil in topical liposome gels for anticancer treatment--formulation and evaluation. Acta Pharm (Zagreb, Croatia). 2003;53(4):241–50.

    CAS  Google Scholar 

  62. Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst. 2010;6(10):1813–20. https://doi.org/10.1039/c0mb00014k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Selderslaghs IW, Hooyberghs J, Blust R, Witters HE. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol. 2013;37:44–56. https://doi.org/10.1016/j.ntt.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  64. Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG, et al. Adverse effects of serotonin depletion in developing zebrafish. Neurotoxicol Teratol. 2012;34(1):152–60. https://doi.org/10.1016/j.ntt.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  65. McLean DL, Fetcho JR. Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish. J Comp Neurol. 2004;480(1):57–71. https://doi.org/10.1002/cne.20281.

    Article  PubMed  Google Scholar 

  66. Cole JT, Holland NB. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res. 2015;5(3):295–309. https://doi.org/10.1007/s13346-015-0218-2.

    Article  CAS  PubMed  Google Scholar 

  67. Martinez CS, Igartúa DE, Calienni MN, Feas DA, Siri M, Montanari J et al. Relation between biophysical properties of nanostructures and their toxicity on zebrafish. Biophys Rev. 2017;9(5):775–91. https://doi.org/10.1007/s12551-017-0294-2.

Download references

Acknowledgements

Jorge Montanari, María Jimena Prieto, C. Facundo Temprana, and Silvia del Valle Alonso are members of CONICET, Argentina. María Natalia Calienni acknowledges fellowships from CONICET Argentina and Ministero degli Affari Esteri e della Cooperazione Internazionale Italia. Authors would like to thank Dr. Humberto Jimenez for the skin explants, The Berry Store for providing the blueberry, and Dr. Juan Montes de Oca and Dr. Roberto Candal of INQUIMAE-CONICET.

Funding

This work was supported by a grant from Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0358, 2014-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Montanari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethic statement

All animal procedures were performed in strict accordance with International Guidelines for animal care and maintenance. The protocols were approved by the Institutional Committee for the Care and Use of Laboratory Animals and the Ethic Committee of the National University of Quilmes (CE-UNQ 2/2014, CICUAL-UNQ 013-15 and CICUAL-UNQ 014-15) (Buenos Aires, Argentina).

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calienni, M.N., Temprana, C.F., Prieto, M.J. et al. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation. Drug Deliv. and Transl. Res. 8, 496–514 (2018). https://doi.org/10.1007/s13346-017-0469-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0469-1

Keywords

Navigation