Skip to main content
Log in

Viscosity and Density of Liquid Lead-Tin And Antimony-Cadmium Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of temperature and composition on the viscosity of high-purity liquid metals and alloys of the Pb-Sn and Sb-Cd systems was investigated by the logarithmic-decrement method. The variation of viscosity with temperature above the liquidus followed the equation: η= AeE/RT. No large increase in viscosity was found just before normal freezing of any of the metals or alloys investigated. Certain alloys, supercooled below their stable liquidus, however, did show a marked increase in viscosity. Experimental activation energies for viscosity were determined for the metals investigated. Liquid-metal density values were obtained by a modified Jaeger’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. N. daC. Andrade: A Theory of the Viscosity of Liquids. Phil. Mag. (1934) 17, p. 497–511; 698–732.

    Article  Google Scholar 

  2. J. D. Bernai: An Attempt at a Molecular Theory of Liquid Structure. Trans. Faraday Society (1937) 33, pp. 27–45.

    Article  Google Scholar 

  3. J. Frenkel: On the Liquid State and the Theory of Fusion. Trans. Faraday Society (1937) 33, pp. 58–65.

    Article  Google Scholar 

  4. R. H. Ewell and H. Eyring: Theory of Viscosity of Liquids as a Function of Temperature and Pressure. Journal of Chemical Physics (1937) 5, pp. 726–736.

    Article  Google Scholar 

  5. F. Gutmann and L. M. Simmons: The Temperature Dependence of the Viscosity of Liquids. Journal of Applied Physics (1952) 23, pp. 977–978.

    Article  Google Scholar 

  6. S. Glasstone: Textbook of Physical Chemistry. (1946) pp. 488–489. New York. D. Van Nostrand Co.

    Google Scholar 

  7. T. Okay a and M. Hasegawa: On the Motion of a Liquid in a Hollow Cylinder Caused by Torsional Oscillation. Japanese Journal of Physics (1936) 11, p. 23.

    MATH  Google Scholar 

  8. T. Okaya: On a Method of Determination of the Coefficient of Viscosity of a Liquid by the Torsional Vibration. Proc. Physics & Math. Society, Japan (1936) 8, pp. 268–279.

    Google Scholar 

  9. M. R. Hopkins and T. C. Toye: Determination of the Viscosity of Molten Metals. Proc. Physical Society (1950) 63B, pp. 773–782.

    Article  Google Scholar 

  10. H. Thielmann and A. Wimmer: The Internal Friction of Liquid Pig Iron. Stahl und Eisen (1927) 47, pp. 389–399.

    Google Scholar 

  11. M. R. Hopkins and T. C. Toye: The Effect of Aluminum on the Viscosity of Molten Zinc. British Iron and Steel Research Assoc. (1950) MW/C/21/50. Restricted circulation.

  12. Handbook of Chemistry and Physics. (1947) 30th ed. Cleveland. Chemical Rubber Publishing Co.

  13. D. P. Smith: Hydrogen in Metals. (1947) Chicago. University of Chicago Press.

    Google Scholar 

  14. E. V. Polyak and S. V. Sergeev: Determination of the Viscosity of Molten Aluminum and Its Alloys. Comptes Rendus (1941) 30, pp. 137–139.

    Google Scholar 

  15. T. P. Yao and V. Kondic: The Viscosity of Molten Tin, Lead, Zinc, Aluminum, and Some of Their Alloys. Journal Institute of Metals (1952) 81, pp. 17–24.

    Google Scholar 

  16. W. R. D. Jones and W. L. Bartlett: The Viscosity of Aluminum and Binary Aluminum Alloys. Journal Institute of Metals (1952) 81, pp. 145–152.

    Google Scholar 

  17. H. T. Greenaway: Surface Tension and Density of Lead-Antimony and Antimony-Cadmium Alloys. Journal Institute of Metals (1948) 74, pp. 133–148.

    Google Scholar 

  18. A. Bienias and F. Sauerwald: The Internal Friction of Molten Metals and Alloys. III. The Internal Friction of Copper, Antimony, Lead, and of Copper-Antimony, Copper-Tin, and Lead-Bismuth Alloys. Ztsch. anorg. allgem. Chemie (1927) 161, pp. 51–75.

    Article  Google Scholar 

  19. H. Esser, F. Greis, and W. Bungardt: The Inner Friction of Liquid Pig Iron. Archiv. Eisenhüttenwesen (1934) 7, pp. 385–388.

    Article  Google Scholar 

  20. V. H. Stott: Measurement of the Viscosity of a Molten Metal by Means of an Oscillating Disk. Proc. Physical Society (1933) 45, pp. 530–544.

    Article  Google Scholar 

  21. F. Sauerwald: The Internal Friction of Molten Metals and Alloys. I. The Method of Measurement and Internal Friction of Lead-Bismuth Alloys. Ztsch. anorg. allgem. Chemie (1924) 135, pp. 255–264.

    Article  Google Scholar 

  22. K. Gering and F. Sauerwald: The Internal Friction of Molten Metals and Alloys. VI. The Internal Friction of Pb, Cd, Zn, Ag, Sn, K, Na, and the Question of Structural Viscosity of Amalgams. Ztsch. anorg. allgem. Chemie (1935) 223, pp. 204–208.

    Article  Google Scholar 

  23. C. H. Desch: Intermetallic Compounds. (1914) Monograph. London. Longmans, Green, and Co.

    Google Scholar 

  24. L. L. Bircumshaw: Surface Tension of Liquid Metals. Collected Researches of the Nat. Phys. Laboratory (Metallurgy) England (1935) 25, pp. 331–367.

    Google Scholar 

  25. A. L. Day, R. B. Sosman, and J. C. Hostetter: Determination of Mineral and Rock Densities at High Temperatures. American Journal of Science (1914) 37, pp. 1–39.

    Article  Google Scholar 

  26. R. Arpi: Viscosity and Density of Molten Metals and Alloys. International Ztsch. Metallog. (1914) 5, pp. 142–168.

    Google Scholar 

  27. C. N. Hinshelwood: The Kinetics of Chemical Change in Gaseous Systems. (1929) Oxford. Oxford University Press.

    Google Scholar 

  28. V. A. Konstantinov: Viscosity of Liquid Tin-Bismuth and Tin-Zinc Eutectic Alloys. Zhurnal Fizicheskoi Khimii (1950) 24, pp. 953–954.

    Google Scholar 

  29. C. E. Fawsitt: On the Determination of Viscosity at High Temperatures. Proc. Royal Society (1908) A80, pp. 270–298.

    MATH  Google Scholar 

  30. K. Honda and H. Endo: Magnetic Analysis as a Means of Studying the Structure of Non-Magnetic Alloys. Journal Institute of Metals (1927) 37, pp. 29–49.

    Google Scholar 

  31. E. Gebhardt, M. Becker, and S. Schäfer: Properties of Metallic Melts. V. Internal Friction of Copper-Tin Alloys. Ztsch. Metallkunde (1953) 44, pp. 510–514.

    Google Scholar 

  32. E. Gebhardt, M. Becker, and S. Schäfer: Properties of Metallic Melts. V. Viscosity of Copper-Tin Alloys. Ztsch. Metallkunde (1952) 43, pp. 292–296.

    Google Scholar 

  33. M. Plüss: The Viscosity and Density of Molten Metals and Alloys. Ztsch. anorg. allgem. Chemie (1915) 93, pp. 1–45.

    Article  Google Scholar 

  34. P. W. Bridgman: The Physics of High Pressures. (1931) New York. The MacMillan Co.; Review of Modern Physics (1946) 18, p. 1.

    Google Scholar 

  35. O. Kubaschewski and R. Hörnle: The Densities of Liquid Mg2Pb and Mg3Pb2. Ztsch. Metallkunde (1951) 42, pp. 129–132.

    Google Scholar 

  36. F. Sauerwald: Classification of Molten Metals and Alloys. II, III. Ztsch. Metallkunde (1950) 41, p. 97–104; 214–218.

    Google Scholar 

  37. O. Kubaschewski: The Change of Entropy, Volume, and Binding State of the Elements on Melting. Trans. Faraday Society (1949) 45, pp. 931–940.

    Article  Google Scholar 

  38. E. Gebhardt and M. Becker: The Internal Friction of Liquid Gold-Silver Alloys. Ztsch. Metallkunde (1951) 42, pp. 111–117.

    Google Scholar 

  39. G. V. Raynor: Equilibrium Diagram of the Lead-Tin System. Annotated Equilibrium Diagrams No. 6 (1947) London. The Institute of Metals.

  40. M. Hansen: The Structure of Binary Alloys. (1943) Reprint. Ann Arbor. Edwards Bros., Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Discussion on this paper, TP 3843E, may be sent, 2 copies, to AIME by Jan. 1, 1955. Manuscript, Apr. 9, 1954. Chicago Meeting, November 1954.

This paper is based on a portion of a thesis by H. J. Fisher submitted, in partial fulfillment of the requirements for the degree of Doctor of Engineering, to the Graduate School of Engineering, Yale University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, H.J., Phillips, A. Viscosity and Density of Liquid Lead-Tin And Antimony-Cadmium Alloys. JOM 6, 1060–1070 (1954). https://doi.org/10.1007/BF03398346

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03398346

Navigation