Skip to main content

Advertisement

Log in

From REDD+ MRV Perspective: Comparison of Two Different Forest Management Regimes Using Geospatial Techniques in Ludi Khola Watershed, Gorkha District, Nepal

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

This study presents a practical example of using remote sensing data and methods for forest management in Ludi Khola watershed (5750 ha) Gorkha District, a REDD+ (Reducing Emissions from Deforestation and Forest Degradation) pilot project site in Nepal. The study area consists of 1888 ha that are assigned to 31 community forests (CFs) and 3862 ha that belong to non-community forests such as governmental and private forests (Non-CFs). By using high-resolution GeoEye-1 (2009 and 2012) satellite images and forest inventory data, temporal dynamics of land cover transitions, tree canopy size classes (crown projection area), Above-Ground Biomass (AGB) were estimated and compared for the two forest regimes (CFs and Non-CFs). Geographic Object-Based Image Analysis (GEOBIA) segmentation and classification techniques were performed. By using the change matrix method, forest area conversion to non-forest (forest loss) of only 1 ha (0.05%) in CF and 27 ha (0.7%) in Non-CF was observed over 2009–2012. On the other hand, change from non-forest to forest (forest gain) occurred on 12 ha (0.6%) in CF and 60 ha (1.5%) in Non-CF. According to land cover information from 2009 to 2012, closed broadleaved forest concealed almost 87% of total CFs’ forest area and 59% of total Non-CFs’ forest area, while open broadleaved forest occupied almost 12 and 20% in CFs and Non-CFs, respectively. The community-based inventory revealed an annual increment of 3.7 t/ha AGB, whereas remote sensing-based modelling estimated 4.5 t/ha AGB. The integration of remote sensing and field data can demonstrate and endorse a much more efficient REDD+ Measurement, Reporting, and Verification (MRV) system in terms of information content, reliability, cost, transparency, verifiability, and scalability.

Zusammenfassung

Aus der REDD+ MRV-Perspektive: Vergleich zweier unterschiedlicher Waldmanagementtypen mittels räumlicher Analysetechniken im Ludi Khola Einzugsgebiet im Gorkha District, Nepal. Die Studie zeigt anhand einer REDD+ (Reducing Emissions from Deforestation and Forest Degradation) Pilotfläche im Ludi Khola Einzugsgebiet (5.750 ha), gelegen im Gorkha-Distrikt in Nepal, den Nutzen von fernerkundlichen Daten und Methoden für das Waldmanagement. Die Fläche unterteilt sich auf 1.888 ha in 31 Gemeindewäldern (community forest, CF) und 3.862 ha Regierungs- und Privatwälder (Nicht-CFs). Unter der Nutzung von hochauflösenden GeoEye-1 Daten aus den Jahren 2009 und 2012 wurden die Veränderungen der Wald- und Landbedeckung, die Überdachung durch die Baumkronen und die oberirdische Biomasse (AGB) be-stimmt. Mittels Geographic Object-Based Image Analysis (GEOBIA) wurden die Satellitendaten segmentiert und klassifiziert. Anschließend wurde die Change-Matrix Methode auf die Klassifikationsergebnisse der Jahre 2009 und 2012 angewendet. In diesem Zeitraum wurde in den Gemeindewäldern ein Rückgang von 1 ha (0,05%), auf den übrigen Waldflächen hingegen eine Verminderung um 27 ha (0,7%) beobachtet. Umgekehrt betrug der Zuwachs der kommunalen Waldfläche 12 ha (0,64%) und 60 ha (1,55%) auf den übrigen Flächen. In beiden Untersuchungsjahren bedeckte geschlossener Laubwald etwa 87% der kommunalen Wälder, wohingegen diese Klasse auf den übrigen Waldflächen 59% abdeckte. Offener Laubwald wurde auf 12% (20%) der kommunalen (übrigen) Wälder detektiert. Der jährliche Zuwachs an AGB differierte zwischen der lokalen Erhebungstechnik (3,7 t/ha) und dem fernerkundungsbasierten Modell (4,5 t/ha) vergleichsweise gering. Die Ergebnisse zeigen, dass die Integration von Fernerkundung und Felddaten das REDD+ Measurement, Reporting and Verification (MRV) System in den Aspekten Informationsgehalt, Glaubwürdigkeit, Kosten, Transparenz, Nachvollziehbarkeit und Skalierbarkeit unterstützen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhattarai RC (2012) Economic impact of community forestry in Nepal: a case of mid-hill districts of Nepal. Econ J Dev 13:75–96

    Google Scholar 

  • Blaschke T et al (2014) Geographic object-based image analysis—towards a new paradigm. ISPRS J Photogramm Remote Sens 87:180–191. doi:10.1016/j.isprsjprs.2013.09.014

    Article  Google Scholar 

  • Chaturvedi R, Raghubanshi A, Singh J (2010) Non-destructive estimation of tree biomass by using wood specific gravity in the estimator. Natl Acad Sci Lett 33:133–138

    Google Scholar 

  • Chave J et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. doi:10.1111/gcb.12629

  • Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159. doi:10.1016/0034-4257(89)90023-0

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370. doi:10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2

  • Danielsen F et al (2011) At the heart of REDD+: a role for local people in monitoring forests? Conserv Lett 4:158–167. doi:10.1111/j.1755-263X.2010.00159.x

    Article  Google Scholar 

  • Dean C, Roxburgh S, Mackey BG (2004) Forecasting landscape-level carbon sequestration using gridded, spatially adjusted tree growth. For Ecol Manag 194:109–129

    Article  Google Scholar 

  • Drǎguţ L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci 24:859–871. doi:10.1080/13658810903174803

    Article  Google Scholar 

  • Erikson M, Olofsson K (2005) Comparison of three individual tree crown detection methods. Mach Vis Appl 16:258–265. doi:10.1007/s00138-005-0180-y

    Article  Google Scholar 

  • Foody GM (2010) Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens Environ 114:2271–2285. doi:10.1016/j.rse.2010.05.003

    Article  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:1–13. doi:10.1088/1748-9326/2/4/045023

    Google Scholar 

  • Gilani H, Shrestha HL, Murthy MS, Phuntso P, Pradhan S, Bajracharya B, Shrestha B (2015) Decadal land cover change dynamics in Bhutan. J Environ Manag 148:91–100. doi:10.1016/j.jenvman.2014.02.014

    Article  Google Scholar 

  • Hashimoto N et al (2011) Multispectral image enhancement for effective visualization. Opt Express 19:9315–9329

    Article  Google Scholar 

  • Herold M, Johns T (2007) Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process. Environ Res Lett 2:1–7. doi:10.1088/1748-9326/2/4/045025

    Article  Google Scholar 

  • Hirata Y, Tabuchi R, Patanaponpaiboon P, Poungparn S, Yoneda R, Fujioka Y (2013) Estimation of aboveground biomass in mangrove forests using high-resolution satellite data. J For Res 19:34–41. doi:10.1007/s10310-013-0402-5

    Article  Google Scholar 

  • Hoang MH, Do TH, Pham MT, van Noordwijk M, Minang PA (2013) Benefit distribution across scales to reduce emissions from deforestation and forest degradation (REDD+) in Vietnam. Land Use Policy 31:48–60

    Article  Google Scholar 

  • Huang W, Sun G, Dubayah R, Cook B, Montesano P, Ni W, Zhang Z (2013) Mapping biomass change after forest disturbance: applying LiDAR footprint-derived models at key map scales. Remote Sens Environ 134:319–332. doi:10.1016/j.rse.2013.03.017

    Article  Google Scholar 

  • Hussin YA et al (2014) Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Appl Geomat 6:59–68. doi:10.1007/s12518-014-0126-z

    Article  Google Scholar 

  • Junttila V et al (2015) Robustness of model-based high-resolution prediction of forest biomass against different field plot designs. Carbon Balance Manag 10:29. doi:10.1186/s13021-015-0038-1

    Article  Google Scholar 

  • Karna YK et al (2015) Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal. Int J Appl Earth Obs Geoinf 38:280–291. doi:10.1016/j.jag.2015.01.011

    Article  Google Scholar 

  • Ke Y, Quackenbush LJ (2011) A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32:4725–4747. doi:10.1080/01431161.2010.494184

    Article  Google Scholar 

  • López-Serrano PM, López-Sánchez CA, Álvarez-González JG, García-Gutiérrez J (2016) A comparison of machine learning techniques applied to landsat-5 TM spectral data for biomass estimation. Can J Remote Sens 42:690–705. doi:10.1080/07038992.2016.1217485

    Article  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing based biomass estimation. Int J Remote Sens 27:1297–1328. doi:10.1080/01431160500486732

    Article  Google Scholar 

  • Maniatis D, Mollicone D (2010) Options for sampling and stratification for national forest inventories to implement REDD+ under the UNFCCC. Carbon Balance Manag 5:9. doi:10.1186/1750-0680-5-9

    Article  Google Scholar 

  • Maraseni TN, Neupane PR, Lopez-Casero F, Cadman T (2014) An assessment of the impacts of the REDD+ pilot project on community forests user groups (CFUGs) and their community forests in Nepal. J Environ Manag 136:37–46. doi:10.1016/j.jenvman.2014.01.011

    Article  Google Scholar 

  • Matin MA, Chitale VS, Murthy MS, Uddin K, Bajracharya B, Pradhan S (2017) Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. Int J Wildland Fire 26:276–286

    Article  Google Scholar 

  • Mbaabu P, Hussin Y, Weir M, Gilani H (2014) Quantification of carbon stock to understand two different forest management regimes in Kayar Khola watershed, Chitwan, Nepal. J Indian Soc Remote Sens 42:1–10. doi:10.1007/s12524-014-0379-3

  • Meiyappan P, Roy PS, Sharma Y, Ramachandran RM, Joshi PK, DeFries RS, Jain AK (2016) Dynamics and determinants of land change in India: integrating satellite data with village socioeconomics. Reg Environ Change. doi:10.1007/s10113-016-1068-2

  • Niraula RR, Gilani H, Pokharel BK, Qamer FM (2013) Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal. J Environ Manag 126:20–29. doi:10.1016/j.jenvman.2013.04.006

    Article  Google Scholar 

  • Palmer Fry B (2011) Community forest monitoring in REDD+: the ‘M’ in MRV? Environ Sci Policy 14:181–187. doi:10.1016/j.envsci.2010.12.004

    Article  Google Scholar 

  • Pandey SS, Maraseni TN, Cockfield G (2014) Carbon stock dynamics in different vegetation dominated community forests under REDD+: a case from Nepal. For Ecol Manag 327:40–47. doi:10.1016/j.foreco.2014.04.028

    Article  Google Scholar 

  • Pandit BH, Thapa GB (2003) A tragedy of non-timber forest resources in the mountain commons of Nepal. Environ Conserv 30:283–292

    Article  Google Scholar 

  • Pham TT, Di Gregorio M, Karki R, Paudel NS, Brockhaus M, Bhushal R (2016) REDD+ politics in the media: a case from Nepal. Clim Change 138:309–323

    Article  Google Scholar 

  • Platt RV, Schoennagel T (2009) An object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938–1999. For Ecol Manag 258:1342–1349

    Article  Google Scholar 

  • Pokharel RK (2012) Factors influencing the management regime of Nepal’s community forestry. For Policy Econ 17:13–17. doi:10.1016/j.forpol.2011.08.002

    Article  Google Scholar 

  • Qazi WA, Baig S, Gilani H, Waqar MM, Dhakal A, Ammar A (2017) Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal. J Appl Remote Sens 11:026038–026038. doi:10.1117/1.JRS.11.026038

    Article  Google Scholar 

  • Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto protocol. Environ Sci Policy 6:4155

    Google Scholar 

  • Sharma BP, Shyamsundar P, Nepal M, Pattanayak SK, Karky BS (2017) Costs, cobenefits, and community responses to REDD+: a case study from Nepal. Ecol Soci 22(2):34 doi:10.5751/es-09370-220234

  • Sousa AMO, Gonçalves AC, Mesquita P, Marques da Silva JR (2015) Biomass estimation with high resolution satellite images: a case study of Quercus rotundifolia. ISPRS J Photogramm Remote Sens 101:69–79. doi:10.1016/j.isprsjprs.2014.12.004

    Article  Google Scholar 

  • Tu T-M, Su S-C, Shyu H-C, Huang PS (2001) A new look at IHS-like image fusion methods. Inf Fusion 2:177–186

    Article  Google Scholar 

  • Xi W et al (2009) Review of forest landscape models: types, methods, development and applications. Acta Ecol Sin 29:69–78. doi:10.1016/j.chnaes.2009.01.001

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by core funds of ICIMOD contributed by the governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland and the United Kingdom. The authors acknowledge the REDD+ NORWEGIAN pilot project, NASA Land-Cover/Land-Use Change Program (No. NNX14AD94G), ANSAB, FECOFUN and ITC Netherlands. This work would not have been possible without the active participation of district forest officers (DFOs) and community forest user group members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hammad Gilani.

Ethics declarations

Conflict of interest

The views and interpretations in this publication are those of the authors, and they are not necessarily attributable to their organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilani, H., Sohail, M. & Koju, U.A. From REDD+ MRV Perspective: Comparison of Two Different Forest Management Regimes Using Geospatial Techniques in Ludi Khola Watershed, Gorkha District, Nepal. PFG 85, 265–278 (2017). https://doi.org/10.1007/s41064-017-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-017-0028-x

Keywords

Navigation