Skip to main content
Log in

Applicability of powder metallurgy to problems of high temperature materials

With discussion

  • Transaction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The paper reviews the efforts made to utilize powder metallurgy to solve problems encountered when using alloys at high temperatures. The following subjects are discussed: comparison of wrought and sintered super alloys, sintered aluminum powder, porous materials for transpiration cooling, molybdenum, and cermets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schwarzkopf: Engineering Properties of Sintered vs Cast Materials. Product Engineering (1946) 17, No. 2, pp. 122–126.

    Google Scholar 

  2. G. J. Comstock and J. D. Shaw: Alloy Powder Products from Fully Alloyed Powders. The Physics of Powder Metallurgy (1951) Edited by W. E. Kingston. P. 372. New York. McGraw-Hill Book Co.

    Google Scholar 

  3. L. H. Mott: Progress Report on Hot Forging Pre-alloyed Metal Powders. Precision Metal Molding (1952) 10, No. 10, p. 38.

    Google Scholar 

  4. P. R. Toolin and N. L. Mochel: The High Temperature Fatigue Strengths of Several Gas Turbine Alloys. Proceedings ASTM (1947) 47, pp. 677–691.

    Google Scholar 

  5. J. P. Lyle, Jr.: Excellent Products of Aluminum Powder Metallurgy. Metals Progress (1952) 62, No. 6, p. 109.

    Google Scholar 

  6. E. Gregory and N. J. Grant: High Temperature Strength of Wrought Aluminum Powder Products. Trans. AIME (1954) 200, pp. 247–252; Journal of Metals (February 1954).

    Google Scholar 

  7. W. D. Jones: Progress in Powder Metallurgy. Journal Chemical, Metallurgical, & Mining Society, South Africa (1952) 52, pp. 216–222.

    Google Scholar 

  8. W. O. Schey: The Advantages of High Inlet Temperature for Gas Turbines and Effectiveness of Various Methods of Cooling the Blades. (1948) Paper presented at the Annual Meeting, ASME.

  9. H. H. Ellerbrook, Jr. and L. J. Schaefer, Jr.: Application of Blade Cooling to Gas Turbines. NACA RM E50A04.

  10. P. Duwez and H. L. Wheeler: Experimental Study of Cooling by Injection of a Fluid Through a Porous Material. Report, Jet Propulsion Laboratory. Journal of Aero Science (1948) 15, pp. 509–521.

    Article  Google Scholar 

  11. G. J. Comstock, J. D. Shaw, C. L. Clark, W. V. Knopp, and G. M. Thomas: Minutes Meeting on Bureau of Aeronautics Sweat Cooling Project at Stevens Institute of Technology (February 24, 1949).

  12. R. L. Probst: Investigation of Sintered Loose Spherical Powders for Fabrication into Transpiration Cooled Turbine Blades. Progress Reports Nos. 1, 2, and 3. Research and Development Div., Federal Mogul Corp., Detroit, Mich.

  13. R. D. Grinthal, J. C. Bradbury, L. H. Mott, and G. J. Comstock: Investigation of Porous Material from Spherical Metal Powders. Bi-monthly Progress Report No. 5 Navy Contract Noa(s)-51-185-c (1951) Stevens Institute of Technology.

  14. G. M. Thomas and G. J. Comstock: Process for Fabrication of Materials for Porous Turbine Blades. Progress Reports Nos. 18 and 19. Summary of 19 Progress Reports (June 1947 to April 1950), Progress Report No. 20. Powder Metallurgy Laboratory, Stevens Institute of Technology (1950).

  15. G. M. Thomas, C. L. Clark, W. V. Knopp, J. D. Shaw, and G. J. Comstock: Process for Fabrication of Materials for Porous Turbine Blades. Progress Report No. 14 Powder Metallurgy Laboratory, Stevens Institute of Technology (Nov. 10, 1948).

  16. M. Hill, O. W. Reen, D. H. Vermelyea, and F. V. Lenel: Production of Porous Metal Compacts. Bimonthly Progress Report No. 3 Navy Research Contract NOa(s) 11022 (October 1950) Rensselaer Polytechnic Institute.

  17. G. M. Thomas, C. L. Clark, W. V. Knopp, J. D. Shaw, G. J. Comstock, and K. B. Davis: Process for Fabrication of Materials for Porous Turbine Blades. Progress Report No. 17 Powder Metallurgy Laboratory, Stevens Institute of Technology (June 30, 1949).

  18. E. G. Pekarek: Operation of Thompson Molybdenum Plant. Final Report to Headquarters of Air Material Command Contract W-33-038-ac-20672 (January 28, 1952).

  19. M. Semchyshen and H. E. Hastette: Arc-Cast Molybdenum Base Alloys. Third Annual Report (1952) Office of Naval Research Contract N8onr-78700, Task Order N8onr-78701, Project NR 034-401.

  20. J. J. Harwood: Molybdenum, Our Most Promising Refractory Metal. Product Engineering (1952) 23, pp. 121–132.

    Google Scholar 

  21. J. J. Gangler: Some Physical Properties of Eight Refractory Oxides and Carbides. Journal American Ceramic Society (1950) 33, No. 12, pp. 367–374.

    Article  Google Scholar 

  22. J. T. Norton: Some Observations on the Role of the Binder in Cemented Refractory Alloys. Powder Metallurgy Bulletin (1951) No. 6, pp. 75–78.

  23. J. C. Redmond and E. N. Smith: Cemented Titanium Carbide. Trans. AIME (1949) 185, p. 987; Journal of Metals (November 1949).

    Google Scholar 

  24. E. M. Trent, A. Carter, and J. Bateman: High Temperature Alloys Based on Titanium Carbide. Metallurgia (1950) 42, p. 111.

    Google Scholar 

  25. P. Schwarzkopf and R. Kieffer: Refractory Hard Metals. (1953) pp. 396–397. New York. MacMillan Co.

    Google Scholar 

  26. D. G. Moore, S. G. Benner, and W. N. Harrison: Studies of High Temperature Protection of a Titanium-Carbide Ceramel by Chromium-Type Ceramic-Metal Coatings. NACA TN 2386 (1951).

  27. A. R. Blackburn and T. S. Shevlin: Fundamental Study and Equipment for Sintering and Testing of Cermet Bodies. V-Fabrication, Testing, and Properties of 30 Chromium-70 Alumina Cermets. Journal American Ceramic Society (1951) 34, No. 11, pp. 327–331.

    Article  Google Scholar 

  28. P. Schwarzkopf and R. Kieffer: Refractory Hard Metals. (1953) New York. MacMillan Co.

    Google Scholar 

  29. W. Arbiter: New High Temperature Intermetallic Materials. WADC Technical Report 53–190 American Electro Metallurgical Corp., Yonkers, N. Y.

  30. W. A. Maxwell: Oxidation-Resistance Mechanism and Other Properties of Molybdenum Disilicide. NACA RM E52A04 (1952).

  31. W. A. Maxwell: Properties of Certain Intermetallics as Related to Elevated-Temperature Applications. I-Molybdenum Disilicide. NACA RM E9G01 (1949).

  32. W. A. Maxwell and R. W. Smith: Thermal Shock Resistance and High Temperature Strength of a Molybdenum Disilicide-Aluminum Oxide Ceramic. NACA RM E53F26 (1953).

  33. W. G. Lidman and H. J. Hamjian: Kinetics of Sintering Chromium Carbide. NACA TN 2491 (1951).

  34. H. J. Hamjian and W. G. Lidman: Influence of Structure on Properties of Sintered Chromium Carbide. NACA TN 2731 (1952).

  35. C. A. Hoffman, G. M. Ault, and J. J. Gangler: Initial Investigation of Carbide-Type Ceramel of 80 Pct Titanium Carbide Plus 20 Pct Cobalt for Use as a Gas-Turbine-Blade Material. NACA TN 1836 (1949).

  36. C. A. Hoffman and A. L. Cooper: Investigation of Titanium Carbide Base Ceramels Containing Either Nickel or Cobalt for Use as Gas-Turbine Blades. NACA RM E52H05 (1952).

  37. E. M. Wise and R. H. Schaefer: The Properties of Pure Nickel-I. Metals and Alloys (1942) 16, pp. 424–428.

    Google Scholar 

  38. Metals Handbook (1948) p. 1183. Cleveland. ASM.

  39. W. L. Havekotte: Super Refractories for Use in Jet Engines. Metals Progress ASM (1953) 64, No. 6, pp. 67–70.

    Google Scholar 

  40. J. W. Graham: Sintered Titanium Carbides Open New Industrial Horizons. Iron Age (1953) 172, pp. 148–152.

    Google Scholar 

  41. B. Maxwell and L. F. Rahm: Impact Testing of Plastics: Elimination of the Toss Factor. Bulletin ASTM (October 1949).

  42. B. Pinkel, G. C. Deutsch, and N. Katz: The NACA Drop Test for the Evaluation of the Impact Strength of Cermets. NACA RM E54D13 (1954).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Discussion on this paper, TP 3844E, may be sent, 2 copies, to AIME by Jan. 1, 1955. Manuscript, May 6, 1954. New York Meeting, February 1954.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ault, G.M., Deutsch, G.C. Applicability of powder metallurgy to problems of high temperature materials. JOM 6, 1214–1230 (1954). https://doi.org/10.1007/BF03398361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03398361

Navigation