Skip to main content
Log in

Inhibiting CDK in Cancer Therapy: Current Evidence and Future Directions

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Cell cycle dysregulation is a hallmark of all cancers, resulting in uncontrolled proliferation. Cyclin dependent kinases (CDKs), a family of proteins that are involved in the regulation of the cell cycle, are frequently overexpressed or mutated in cancer. Hence, CDK-inhibiting drugs have been developed and evaluated as cancer therapeutics. Clinical trials have shown CDK4/6 inhibitors (CDK4/6i) to be relatively safe and effective, and these are now standard of care treatment for advanced hormone receptor positive breast cancer. Some CDK4/6i drugs are also able to cross the blood brain barrier and may, therefore, offer effective therapy for primary and metastatic central nervous system malignancies. Ongoing research is also evaluating CDK4/6i for additional breast cancer subtypes and non-breast malignancies with promising early phase clinical trial results. Finally, pre-clinical research has identified potential biomarkers for CDK4/6i efficacy and is exploring potential resistance mechanisms to this treatment. Further clinical-translational research is needed to advance patient selection and combinatorial treatment strategies with CDK4/6i in breast cancer and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ramaswamy B, Phelps MA, Baiocchi R, Bekaii-Saab T, Ni W, Lai JP, et al. A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors. Investig New Drugs. 2012;30(2):629–38.

    Article  CAS  Google Scholar 

  2. Tan AR, Yang X, Berman A, Zhai S, Sparreboom A, Parr AL, et al. Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin Cancer Res. 2004;10(15):5038–47.

    Article  CAS  PubMed  Google Scholar 

  3. O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.

    Article  PubMed  Google Scholar 

  4. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    CAS  PubMed  Google Scholar 

  6. Knudsen ES, Witkiewicz AK. Defining the transcriptional and biological response to CDK4/6 inhibition in relation to ER+/HER2- breast cancer. Oncotarget. 2016;7(43):69111–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wardell SE, Ellis MJ, Alley HM, Eisele K, VanArsdale T, Dann SG, et al. Efficacy of SERD/SERM hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy-resistant breast cancer. Clin Cancer Res. 2015;21(22):5121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20(5):620–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leontieva OV, Blagosklonny MV. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion. Cell Cycle. 2013;12(18):3063–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonuccelli G, Peiris-Pages M, Ozsvari B, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: telomerase drives tumor cell heterogeneity. Oncotarget. 2017;8(6):9868–84.

    Article  PubMed  Google Scholar 

  12. Qin G, Xu F, Qin T, Zheng Q, Shi D, Xia W, et al. Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway. Oncotarget. 2015;6(39):41794–808.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Acevedo M, Vernier M, Mignacca L, Lessard F, Huot G, Moiseeva O, et al. A CDK4/6-dependent epigenetic mechanism protects cancer Cells from PML-induced senescence. Cancer Res. 2016;76(11):3252–64.

    Article  CAS  PubMed  Google Scholar 

  14. Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11(19):3599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2016;14(5):979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vijayaraghavan S, Karakas C, Doostan I, Chen X, Bui T, Yi M, et al. CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nat Commun. 2017;8:15916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 2013;19(22):6173–82.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang YX, Sicinska E, Czaplinski JT, Remillard SP, Moss S, Wang Y, et al. Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer Ther. 2014;13(9):2184–93.

    Article  CAS  PubMed  Google Scholar 

  19. Jansen VM, Bhola NE, Bauer JA, Formisano L, Lee KM, Hutchinson KE, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer. Cancer Res. 2017;77(9):2488–99.

    Article  CAS  PubMed  Google Scholar 

  20. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of Abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid Tumors. Cancer Discov. 2016;6(7):740–53.

    Article  CAS  PubMed  Google Scholar 

  21. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, et al. A phase I study of the cyclin-dependent Kinase 4/6 inhibitor Ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res. 2016;22(23):5696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dickler MN, Tolaney SM, Rugo HS, Cortes J, Dieras V, Patt D, et al. MONARCH 1, a phase II study of Abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–24.

    Article  CAS  PubMed  Google Scholar 

  24. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–67.

    Article  CAS  PubMed  Google Scholar 

  25. Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with Temozolomide in an intracranial Glioblastoma Xenograft. Drug Metab Dispos. 2015;43(9):1360–71.

    Article  CAS  PubMed  Google Scholar 

  26. Tate SC, Burke TF, Hartman D, Kulanthaivel P, Beckmann RP, Cronier DM. Optimising the combination dosing strategy of abemaciclib and vemurafenib in BRAF-mutated melanoma xenograft tumours. Br J Cancer. 2016;114(6):669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene. 1995;10(4):775–8.

    CAS  PubMed  Google Scholar 

  29. IBRANCE® (palbociclib) - FDA. [cited 2017]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/207103s002lbl.pdf.

  30. Ibrance provides novel treatment option for women with advanced or metastatic disease. [cited 2017]; Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2016/09/news_detail_002604.jsp&mid=WC0b01ac058004d5c1.

  31. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  32. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finn RS, Crown JP, Ettl J, Schmidt M, Bondarenko IM, Lang I, et al. Efficacy and safety of palbociclib in combination with letrozole as first-line treatment of ER-positive, HER2-negative, advanced breast cancer: expanded analyses of subgroups from the randomized pivotal trial PALOMA-1/TRIO-18. Breast Cancer Res. 2016;18(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and Letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.

    Article  CAS  PubMed  Google Scholar 

  35. Turner NC, Ro J, Andre F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  36. Ribociclib (Kisqali). [cited 2017]; Available from: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm546438.htm.

  37. Novartis Kisqali® (ribociclib) receives EU approval as first-line treatment for HR+/HER2- locally advanced or metastatic breast cancer in combination with any aromatase inhibitor. [cited 2017]; Available from: https://novartis.gcs-web.com/Novartis-Kisqali-ribociclib-receives-EU-approval-as-first-line-treatment-for-HR%25252B/HER2.

  38. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.

    Article  CAS  PubMed  Google Scholar 

  39. Fasching PAD, Fehm T, Janni W, Kuemmel S, Lueftner D, Schneeweiss A, et al. RIBECCA - a phase IIIb, multi-center, open label study for women with estrogen receptor positive locally advanced or metastatic breast cancer treated with ribociclib (LEE011) in combination with letrozole. Cancer Res. 2017;77(4 Supplement):OT2-01-18.

    Article  Google Scholar 

  40. Chen P, Lee NV, Hu W, Xu M, Ferre RA, Lam H, et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol Cancer Ther. 2016;15(10):2273–81.

    Article  CAS  PubMed  Google Scholar 

  41. FDA Breakthrough Therapy Designation to Abemaciclib for Breast Cancer. Oncology Times. 2015 10 November 2015;37(21, FDA Updates):21.

  42. VERZENIO™ (abemaciclib). [cited 2017]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208716s000lbl.pdf.

  43. Tolaney SMM, Thaddeus BJ, et al. A phase Ib study of abemaciclib with therapies for metastatic breast cancer. J Clin Oncol. 2015;33(15 Supplement):522.

    Google Scholar 

  44. Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: Abemaciclib in combination with Fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.

    Article  PubMed  Google Scholar 

  45. Di Leo AT, Campone M, Sohn J, Paluch-Shimon S, Huober J, Park I, Tredan O, Chen S, Manso L, Freedman O, Jaliffe G, Forrester T, Frenzel M, Barriga S, Smith I, Bourayou N, Goetz M (ed) MONARCH 3: Abemaciclib as initial therapy for patients with HR+/HER2- advanced breast cancer. Ann Oncol. 2017;28(supplement_5):2360_PR

  46. Cen L, Carlson BL, Schroeder MA, Ostrem JL, Kitange GJ, Mladek AC, et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-Oncology. 2012;14(7):870–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011;17(6):1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiedemeyer WR, Dunn IF, Quayle SN, Zhang J, Chheda MG, Dunn GP, et al. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci U S A. 2010;107(25):11501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Taylor-Harding B, Aspuria PJ, Agadjanian H, Cheon DJ, Mizuno T, Greenberg D, et al. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget. 2015;6(2):696–714.

    Article  PubMed  Google Scholar 

  50. Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in Estrogen receptor-positive breast cancer. Cancer Res. 2016;76(8):2301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arnedos M, Cheaib B, Michiels S, Scott V, Adam J, Leroux-Kozal V, et al. Anti-proliferative response and predictive biomarkers to palbociclib in early breast cancer: the preoperative Palbociclib (POP) randomized trial. Cancer Res. 2016;76(14 Supplement):CT041.

    Article  Google Scholar 

  52. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.

    Article  CAS  PubMed  Google Scholar 

  53. Fribbens C, O'Leary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M, et al. Plasma ESR1 mutations and the treatment of Estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2016;34(25):2961–8.

    Article  CAS  PubMed  Google Scholar 

  54. Gradishar WJ. New approaches to endocrine therapy for breast cancer. J Natl Compr Cancer Netw. 2017;15(5S):679–81.

    Article  Google Scholar 

  55. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Asghar U, Herrera-Abreu MT, Cutts R, Babina I, Pearson A, Turner NC. Identification of subtypes of triple negative breast cancer (TNBC) that are sensitive to CDK4/6 inhibition. J Clin Oncol. 2015;33(Supplement): 11098.

  57. Curigliano G, Gomez Pardo P, Meric-Bernstam F, Conte P, Lolkema MP, Beck JT, et al. Ribociclib plus letrozole in early breast cancer: a presurgical, window-of-opportunity study. Breast. 2016;28:191–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A, et al. NeoPalAna: Neoadjuvant Palbociclib, a Cyclin-dependent Kinase 4/6 inhibitor, and Anastrozole for clinical stage 2 or 3 Estrogen receptor-positive breast cancer. Clin Cancer Res. 2017;23(15):4055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hurvitz SA, Schilder JM, Martin F, et al. A phase II study of neoadjuvant abemaciclib (LY2835219) in postmenopausal women with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) breast cancer (neoMONARCH). Cancer Res. 2016;76(14 Supplement): CT092.

  60. Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Tomczak E, et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood. 2006;108(5):1744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang L, Wang J, Blaser BW, Duchemin AM, Kusewitt DF, Liu T, et al. Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood. 2007;110(6):2075–83.

    Article  CAS  PubMed  Google Scholar 

  62. Baughn LB, Di Liberto M, Wu K, Toogood PL, Louie T, Gottschalk R, et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 2006;66(15):7661–7.

    Article  CAS  PubMed  Google Scholar 

  63. Sumi NJ, Kuenzi BM, Knezevic CE, Remsing Rix LL, Rix U. Chemoproteomics reveals novel protein and lipid Kinase targets of clinical CDK4/6 inhibitors in lung cancer. ACS Chem Biol. 2015;10(12):2680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Comstock CE, Augello MA, Goodwin JF, de Leeuw R, Schiewer MJ, Ostrander WF Jr, et al. Targeting cell cycle and hormone receptor pathways in cancer. Oncogene. 2013;32(48):5481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Francis AM, Alexander A, Liu Y, Vijayaraghavan S, Low KH, Yang D, et al. CDK4/6 inhibitors sensitize Rb-positive sarcoma cells to Wee1 Kinase inhibition through reversible cell-cycle arrest. Mol Cancer Ther. 2017;16(9):1751–64.

    Article  CAS  PubMed  Google Scholar 

  66. Rivadeneira DB, Mayhew CN, Thangavel C, Sotillo E, Reed CA, Grana X, et al. Proliferative suppression by CDK4/6 inhibition: complex function of the retinoblastoma pathway in liver tissue and hepatoma cells. Gastroenterology. 2010;138(5):1920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70(8):3228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshida A, Lee EK, Diehl JA. Induction of therapeutic senescence in Vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res. 2016;76(10):2990–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee MS, Helms TL, Feng N, Gay J, Chang QE, Tian F, et al. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget. 2016;7(26):39595–608.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kadambi GP, Pinder MC, Alberto C, et al. A phase II clinical trial of the CDK 4/6 inhibitor palbociclib (PD 0332991) in previously treated, advanced non-small cell lung cancer (NSCLC) patients with inactivated CDKN2A. J Clin Oncol. 2014;32(15 Supplement):8077.

    Google Scholar 

  71. Schuler MH, Ascierto PA, De Vos F, et al. Phase 1b/2 trial of ribociclib+binimetinib in metastatic NRAS-mutant melanoma: safety, efficacy, and recommended phase 2 dose. J Clin Oncol. 2017;35(15 Supplement):9519.

  72. Safety and Efficacy of LEE011 and LGX818 in Patients With BRAF Mutant Melanoma. [cited 2017]; Available from: https://clinicaltrials.gov/ct2/show/results/NCT01777776?cond=NCT01777776&rank=1.

  73. Dickson MA, Schwartz GK, Keohan ML, D'Angelo SP, Gounder MM, Chi P, et al. Progression-free survival among patients with well-differentiated or dedifferentiated Liposarcoma treated with CDK4 inhibitor Palbociclib: a phase 2 clinical trial. JAMA Oncol. 2016;2(7):937–40.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun SE, et al. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016;58:41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A Study of PD 0332991 in Patients With Recurrent Rb Positive Glioblastoma (PD0332991). [cited 2017]; Available from: https://clinicaltrials.gov/ct2/show/results/NCT01227434?sect=X70156&term=NCT01227434&rank=1#outcome1.

  76. Geoerger B, Bourdeaut F, DuBois SG, Fischer M, Geller JI, Gottardo NG, et al. A phase I study of the CDK4/6 inhibitor Ribociclib (LEE011) in Pediatric patients with malignant Rhabdoid Tumors, Neuroblastoma, and other solid tumors. Clin Cancer Res. 2017;23(10):2433–41.

    Article  CAS  PubMed  Google Scholar 

  77. Vaughn DJ, Hwang WT, Lal P, Rosen MA, Gallagher M, O'Dwyer PJ. Phase 2 trial of the cyclin-dependent kinase 4/6 inhibitor palbociclib in patients with retinoblastoma protein-expressing germ cell tumors. Cancer. 2015;121(9):1463–8.

    Article  CAS  PubMed  Google Scholar 

  78. Leonard JP, LaCasce AS, Smith MR, Noy A, Chirieac LR, Rodig SJ, et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood. 2012;119(20):4597–607.

    Article  CAS  PubMed  Google Scholar 

  79. Morschhauser F, Bouabdallah K, Stilgenbauer S, et al. Clinical activity of Abemaciclib (LY2835219), a cell cycle inhibitor selective for CDK4 and CDK6, in patients with relapsed or refractory mantle cell lymphoma. Blood. 2014;124(21):3067.

    Google Scholar 

  80. Niesvizky R, Badros AZ, Costa LJ, Ely SA, Singhal SB, Stadtmauer EA, et al. Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. Leuk Lymphoma. 2015;56(12):3320–8.

    Article  CAS  PubMed  Google Scholar 

  81. Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res. 2012;18(2):568–76.

    Article  CAS  PubMed  Google Scholar 

  82. Dickson MA, Tap WD, Keohan ML, D'Angelo SP, Gounder MM, Antonescu CR, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol. 2013;31(16):2024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldman JW, Shi P, Reck M, Paz-Ares L, Koustenis A, Hurt KC. Treatment rationale and study design for the JUNIPER study: a randomized phase III study of Abemaciclib with best supportive care versus Erlotinib with best supportive care in patients with stage IV non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy. Clin Lung Cancer. 2016;17(1):80–4.

    Article  CAS  PubMed  Google Scholar 

  84. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. 1996;56(13):2973–8.

    CAS  PubMed  Google Scholar 

  85. Wirger A, Perabo FG, Burgemeister S, Haase L, Schmidt DH, Doehn C, et al. Flavopiridol, an inhibitor of cyclin-dependent kinases, induces growth inhibition and apoptosis in bladder cancer cells in vitro and in vivo. Anticancer Res. 2005;25(6B):4341–7.

    CAS  PubMed  Google Scholar 

  86. Aklilu M, Kindler HL, Donehower RC, Mani S, Vokes EE. Phase II study of flavopiridol in patients with advanced colorectal cancer. Ann Oncol. 2003;14(8):1270–3.

    Article  CAS  PubMed  Google Scholar 

  87. Burdette-Radoux S, Tozer RG, Lohmann RC, Quirt I, Ernst DS, Walsh W, et al. Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Investig New Drugs. 2004;22(3):315–22.

    Article  CAS  Google Scholar 

  88. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997;243(1-2):527–36.

    Article  CAS  PubMed  Google Scholar 

  89. Gritsch D, Maurer M, Zulehner N, Wesierska-Gadek J. Tamoxifen enhances the anti-proliferative effect of roscovitine, a selective cyclin-dependent kinase inhibitor, on human ER-positive human breast cancer cells. J Exp Ther Oncol. 2011;9(1):37–45.

    CAS  PubMed  Google Scholar 

  90. Appleyard MV, O'Neill MA, Murray KE, Paulin FE, Bray SE, Kernohan NM, et al. Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer. 2009;124(2):465–72.

    Article  CAS  PubMed  Google Scholar 

  91. Benson C, White J, De Bono J, O'Donnell A, Raynaud F, Cruickshank C, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  92. Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther. 2010;9(8):2344–53.

    Article  CAS  PubMed  Google Scholar 

  93. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen XX, Xie FF, Zhu XJ, Lin F, Pan SS, Gong LH, et al. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer. Oncotarget. 2015;6(17):14926–39.

    PubMed  PubMed Central  Google Scholar 

  95. Mita MM, Joy AA, Mita A, Sankhala K, Jou YM, Zhang D, et al. Randomized phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer. 2014;14(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  96. Mitri Z, Karakas C, Wei C, Briones B, Simmons H, Ibrahim N, et al. A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer. Investig New Drugs. 2015;33(4):890–4.

    Article  CAS  Google Scholar 

  97. Ghia P, Scarfo L, Perez S, Pathiraja K, Derosier M, Small K, et al. Efficacy and safety of dinaciclib vs ofatumumab in patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2017;129(13):1876–8.

    Article  CAS  PubMed  Google Scholar 

  98. Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA, et al. Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol. 2009;27(35):6012–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Briot K, Tubiana-Hulin M, Bastit L, Kloos I, Roux C. Effect of a switch of aromatase inhibitors on musculoskeletal symptoms in postmenopausal women with hormone-receptor-positive breast cancer: the ATOLL (articular tolerance of letrozole) study. Breast Cancer Res Treat. 2010;120(1):127–34.

    Article  CAS  PubMed  Google Scholar 

  100. Gennatas C, Michalaki V, Carvounis E, Psychogios J, Poulakaki N, Katsiamis G, et al. Third-line hormonal treatment with exemestane in postmenopausal patients with advanced breast cancer progressing on letrozole or anastrozole. A phase II trial conducted by the Hellenic Group of Oncology (HELGO). Tumori. 2006;92(1):13–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. Layman.

Ethics declarations

Funding

None.

Conflict of Interest

Dr. Layman has received <$5000 in consulting fees from Novartis and currently receives research funding from Pfizer and Novartis as Principal Investigator for ongoing clinical trials at her institution.

Dr. Moulder has received <$10,000 in consulting fees from Novartis. Dr. Moulder currently receives research funding from Pfizer and Novartis as Principal Investigator for ongoing clinical trials at her institution.

The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaraghavan, S., Moulder, S., Keyomarsi, K. et al. Inhibiting CDK in Cancer Therapy: Current Evidence and Future Directions. Targ Oncol 13, 21–38 (2018). https://doi.org/10.1007/s11523-017-0541-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0541-2

Navigation