Skip to main content

Advertisement

Log in

Environmental heterogeneity, not distance, structures montane epigaeic spider assemblages in north-western Patagonia (Argentina)

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

There is considerable controversy around the patterns and processes that influence spatial variation in taxonomic composition in mountain environments. We analysed elevational variation in the taxonomic composition of epigaeic spider assemblages across five mountains in north-western Patagonia (Argentina) to examine the relative importance of dispersal (distance) limitation and environmental heterogeneity on a regional scale. The distance limitation hypothesis predicts greater taxonomic similarity between sampling sites separated by short geographical distances than between mountain peaks separated by longer distances, a lack of indicator species of macro-habitats, and weak associations between spider species composition and environmental gradients. Alternatively, the environmental heterogeneity hypothesis predicts that taxonomic differentiation will occur over short distances along elevation gradients in association with the turnover in major habitats and change in environmental conditions, and that indicator species will be present. We collected spiders using 486 pitfall traps arranged in fifty-four 100-m2 grid plots of nine traps separated by ~ 100 m of elevation, from the base to the summit of each mountain. Multivariate analyses identified spider assemblages that were associated with macro-habitats rather than with mountains. Local environmental variation (mainly in vegetation cover), precipitation and soil characteristics influenced the spatial variation in species composition. Characteristic indicator species showed high specificity and fidelity to macro-habitats, whereas vulnerable species showed high specificity and low fidelity to mountains or macro-habitats. We conclude that, on a regional scale, species adaptation to environmental gradients plays a more important role than dispersal limitation in structuring the taxonomic composition of spider assemblages. Moreover, the presence of indicator species suggests that spiders have a great potential as ecological indicators for evaluating the response of montane biodiversity to future climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey JJ, Boyd DS, Hjort J, Lavers CP, Field R (2017) Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12574

    Google Scholar 

  • Barros VR, Cordón V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Argentina

  • Barton PS, Evans MJ, Foster CN, Cunningham SA, Manning AD (2017) Environmental and spatial drivers of spider diversity at contrasting microhabitats. Austral Ecol. https://doi.org/10.1111/aec.12488

    Google Scholar 

  • Birkhofer K, Volkmar W (2012) The global relationship between climate, net primary production and the diet of spiders. Glob Ecol Biogeogr 21:100–108

    Article  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1987a) Soil pH (Part 2). Methods for chemical analysis of soils, pp 9–12. NZ Soil Bureau Scientific Report Nr. 80. NZ Soil Bureau. Department of Scientific and Industrial Research, Lower Hunt,

  • Blakemore LC, Searle PL, Daly BK (1987b) Soluble salts (Part 9). Methods for Chemical Analysis of Soils, pp 77–82. NZ Soil Bureau Scientific Report Nr. 80. NZ Soil Bureau. Department of Scientific and Industrial Research, Lower Hunt

  • Bonte D, Baert L, Maelfait J-P (2002) Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J Arachnol 30:331–343

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2010) Spider assemblages across elevational and latitudinal gradients in the Yukon Territory. Canada Arctic 63:261–272

    Google Scholar 

  • Bray RJ, Curtis JT (1957) An ordination of the upland forest communities of southern Winsconin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Cabrera ÁL, Willink A (1980) Biogeografía de América Latina. Segunda ed. Monografía 13. Serie de biología. Secretaría General de la Organización de los Estados Americanos. Programa Regional de Desarrollo Científico y Tecnológico, Washington D.C.  

    Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:1–10

    Google Scholar 

  • Carvalho JC, Cardoso P, Crespo LC, Henriques S, Carvalho R, Gomes P (2011) Determinants of beta diversity of spiders in coastal dunes along a gradient of mediterraneity. Divers Distrib 17:225–234

    Article  Google Scholar 

  • Carvalho LS, Sebastian N, Araújo HFP, Dias SC, Venticinque E, Brescovit AD, Vasconcellos A (2015) Climatic variables do not directly predict spider richness and abundance in semiarid caatinga vegetation, Brazil. Environ Entomol 44:54–63

    Article  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Phil Trans R Soc B 366:2351–2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatzaki M, Lymberakis P, Markakis G, Mylonas M (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. J Biogeogr 32:813–831

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities. An approach to statistical analysis and interpretation. PRIMER-R, Plymouth

    Google Scholar 

  • Coulson JC, Butterfield J (1986) The spider communities on peat and upland grasslands in northern England. Holarct Ecol 9:229–239

    Google Scholar 

  • Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296

    Article  Google Scholar 

  • de Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Economo EP (2011) Biodiversity conservation in metacommunity networks: linking pattern and persistence. Am Nat 177:E167–E180

    Article  PubMed  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina. Red Latinoamericana de Botánica. San Carlos de Bariloche, Argentina

  • Ferreyra M, Clayton S, Ezcurra C (1998) La flora altoandina de los sectores este y oeste del Parque Nacional Nahuel Huapi, Argentina. Darwiniana 36:65–79

    Google Scholar 

  • Foelix RF (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Foord SH, Dippenaar-Schoeman AS (2016) The effect of elevation and time on mountain spider diversity: a view of two aspects in the Cederberg mountains of South Africa. J Biogeogr 43:2354–2365

    Article  Google Scholar 

  • Gillette PN, Ennis KK, Martínez GD, Philpott SM (2015) Changes in species richness, abundance, and composition of arboreal twig-nesting ants along an elevational gradient in coffee landscapes. Biotropica 47:712–722

    Article  Google Scholar 

  • Graham CA, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, McCain CM, Bowie RCK, Moritz C, Baines SB, Schneider CJ, VanDerWal J, Rahbek C, Kozak KH, Sanders NJ (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37:001–009

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013) Biodiversity from mountain building. Nat Geosci 6:154

    Article  CAS  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJC (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Kitzberger T (2012) Ecotones as complex arenas of disturbance,climate, and human impacts: the trans-Andean forest-steppe ecotone of northern Patagonia. In: Myster RW (ed) Ecotones between forest and grassland. Springer, New York, pp 59–88

    Chapter  Google Scholar 

  • Klute A (1986) Methods of soil analysis. Part 1. Physical an mineralogical methods. American Society of Agronomy-Soil Science Society of America, Madison

    Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121:73–78

    Article  Google Scholar 

  • Kropf C (2013) Hydraulic System of Locomotion. In: Nentwig W (ed) Spider ecophysiology. Springer-Verlag, Berlin, Heidelberg, pp 43–56

    Chapter  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10

    Article  PubMed  Google Scholar 

  • Leingärtner A, Krauss J, Steffan-Dewenter I (2014) Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175:613–623

    Article  PubMed  Google Scholar 

  • Liu C, Dudley KL, Xu Z-h, Economo EP (2017) Mountain metacommunities: climate and spatial connectivity shape ant diversity in a complex landscape. Ecography. https://doi.org/10.1111/ecog.03067

    Google Scholar 

  • Mallis RE, Hurd LE (2005) Diversity among ground-dwelling spider assemblages: habitat generalists and specialists. J Arachnol 33:101–109

    Article  Google Scholar 

  • Masiokas MA, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Chang 60:85–100

    Article  Google Scholar 

  • McGeoch MA, van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672

    Article  Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Nilsson C, Grelsson G (1995) The fragility of ecosystems: a review. J Appl Ecol 32:677–692

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: Community Ecology Package

  • Paritsis J, Veblen TT, Holz A (2014) Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J Veg Sci 26:89–101

    Article  Google Scholar 

  • Paruelo JM (1998) The climate of Patagonia general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Paruelo JM, Jobbágy EG, Sala OE (1998) Biozones of Patagonia (Argentina). Ecol Austral 8:145–153

    Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Ind 6:780–793

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315

    Article  Google Scholar 

  • Ruggiero A, Werenkraut V (2014) Legacy patterns in the abundance of epigaeic mountain beetles after the eruption of the Puyehue-Cordon Caulle volcanic complex (NW Patagonia, Argentina). Ecol Austral 24:31–41

    Google Scholar 

  • Sanders D, Vogel E, Knop E (2014) Individual and species-specific traits explain niche size and functional role in spiders as generalist predators. J Anim Ecol 84:134–142

    Article  PubMed  Google Scholar 

  • Spears LR, MacMahon JA (2012) An experimental study of spiders in a shrub-steppe ecosystem: the effects of prey availability and shrub architecture. J Arachnol 40:218–227

    Article  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis Part 3. Chemical methods. SSSA Book Series No 5. American Society of Agronomy—Soil Science Society of America, Madison, pp 475–490

    Google Scholar 

  • Turnbull AL (1973) Ecology of the True Spiders (Araneomorphae). Annu Rev Entomol 18:305–348

    Article  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure. Volume 8 of the series population and community biology series. Chapman and Hall, London, pp 325–348

    Google Scholar 

  • van Rensburg BJ, McGeoch MA, Chown SL, van Jaarsveld AS (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol Conserv 88:145–153

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J Veg Sci 3:507–520

    Article  Google Scholar 

  • Walter H (1978) Vegetation of the earth and ecological systems of the geo-biosphere, 2nd edn, Heidelberg Science Library. Springer, Heidelberg

    Google Scholar 

  • Werenkraut V (2010) Patrones altitudinales en la diversidad de coleópteros y hormigas epígeos del noroeste de la Patagonia Argentina. Tesis doctoral. Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Buenos Aires

  • Werenkraut V, Ruggiero A (2013) Altitudinal variation in the taxonomic composition of ground-dwelling beetle assemblages in NW Patagonia, Argentina: environmental correlates at regional and local scales. Insect Conserv Divers 6:82–92

    Article  Google Scholar 

  • Werenkraut V, Ruggiero A (2014) The richness and abundance of epigaeic mountain beetles in north-western Patagonia, Argentina: assessment of patterns and environmental correlates. J Biogeogr 41:561–573

    Article  Google Scholar 

  • Werenkraut V, Fergnani PN, Ruggiero A (2015) Ants at the edge: a sharp forest-steppe boundary influences the taxonomic and functional organization of ant species assemblages along elevational gradients in northwestern Patagonia (Argentina). Biodiv Conserv 24:287–308

    Article  Google Scholar 

  • Wise DH (1995) Spiders in ecological webs, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • World Spider Catalog (2017) Natural History Museum Bern, version 18.0. http://wsc.nmbe.ch. Accessed 5 Jul 2017

  • Zografou K, Wilson RJ, Halley JM, Tzirkalli E, Vassiliki K (2017) How are arthopod communities structured and why are they so diverse? Answers from Mediterranean mountains using hierarchical additive partitioning. Biodivers Conserv. https://doi.org/10.1007/s10531-017-1303-2

    Google Scholar 

Download references

Acknowledgements

This project is part of P-UE 2016 22920160100008CO developed at INIBIOMA (CONICET/UNCo). We thank the Agencia Nacional para la Promoción de la Ciencia y Técnica (ANPCyT—FONCYT: PICT2013-0539, PICT2015-0283), CONICET and the British Ecological Society that provided financial support during several years, which allowed developing long-term research on the biodiversity of mountains in north-western Patagonia. C. Grismado and L. Piacentini (MACN-Ar) provided assistance in the identification of spiders. C. Reemts reviewed the manuscript to improve our English. The National Administration of National Parks provided the authorization to work and collect arthropod specimens in the Nahuel Huapi National Park. M. Sahores, F. Galossi, C. Galossi and J. Benclowicz were committed assistants during the long days of summer fieldwork.

Funding

This study was funded by ANPCyT—FONCYT: PICT2013-0539, PICT2015-0283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ruggiero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 KB)

Supplementary material 2 (PDF 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aisen, S., Werenkraut, V., Márquez, M.E.G. et al. Environmental heterogeneity, not distance, structures montane epigaeic spider assemblages in north-western Patagonia (Argentina). J Insect Conserv 21, 951–962 (2017). https://doi.org/10.1007/s10841-017-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-0034-8

Keywords

Navigation