Skip to main content

Advertisement

Log in

Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Molecular effects of various ablative and non-ablative laser treatments on human skin cells—especially primary effects on epidermal keratinocytes and dermal fibroblasts—are not yet fully understood. We present the first study addressing molecular effects of fractional non-sequential ultrapulsed CO2 laser treatment using a 3D skin model that allows standardized investigations of time-dependent molecular changes ex vivo. While histological examination was performed to assess morphological changes, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of laser treatment. Irradiated models exhibited dose-dependent morphological changes resulting in an almost complete recovery of the epidermis 5 days after irradiation. On day 5 after laser injury with a laser fluence of 100 mJ/cm2, gene array analysis identified an upregulation of genes associated with tissue remodeling and wound healing (e.g., COL12A1 and FGF7), genes that are involved in the immune response (e.g., CXCL12 and CCL8) as well as members of the heat shock protein family (e.g., HSPB3). On the other hand, we detected a downregulation of matrix metalloproteinases (e.g., MMP3), differentiation markers (e.g., LOR and S100A7), and the pro-inflammatory cytokine IL1α.

Overall, our findings substantiate the understanding of time-dependent molecular changes after CO2 laser treatment. The utilized 3D skin model system proved to be a reliable, accurate, and reproducible tool to explore the effects of various laser settings both on skin morphology and gene expression during wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neis MM, Wendel A, Wiederholt T, Marquardt Y, Joussen S, Baron JM, Merk HF (2010) Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol 23:29–39

    Article  CAS  PubMed  Google Scholar 

  2. Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, Lüscher B, Baron JM (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129:426–433

    Article  CAS  PubMed  Google Scholar 

  3. Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69-70:1–18

    Article  CAS  PubMed  Google Scholar 

  4. Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69-70:81–102

    Article  CAS  PubMed  Google Scholar 

  5. Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik-Voogt C, Baron JM (2015) Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments. Lasers Surg Med 47:257–265

    Article  PubMed  Google Scholar 

  6. Amann PM, Marquardt Y, Steiner T, Hölzle F, Skazik-Voogt C, Heise R, Baron JM (2016) Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31:397–404

    Article  PubMed  Google Scholar 

  7. Huth S, Marquardt Y, Amann PM, Leverkus M, Huth L, Baron JM, Gerber PA (2016) Ablative non-sequential fractional ultrapulsed CO2 laser pretreatment improves conventional photodynamic therapy with methyl aminolevulinate in a novel human in vitro 3D actinic keratosis skin model. Exp Dermatol 25:997–999

    Article  CAS  PubMed  Google Scholar 

  8. Majid I, Imran S (2014) Fractional CO2 laser resurfacing as monotherapy in the treatment of atrophic facial acne scars. J Cutan Aesthet Surg 7:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hultman CS, Friedstat JS, Edkins RE, Cairns BA, Meyer AA (2014) Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up. Ann Surg 260:519–529

    PubMed  Google Scholar 

  10. Omi T, Numano K (2014) The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther 23:49–60

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tretti Clementoni M, Galimberti M, Tourlaki A, Catenacci M, Lavagno R, Bencini PL (2013) Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation. Lasers Med Sci 28:643–650

    Article  PubMed  Google Scholar 

  12. Togsverd-Bo K, Haak CS, Thaysen-Petersen D, Wulf HC, Anderson RR, Hædersdal M (2012) Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial. Br J Dermatol 166:1262–1269

    Article  CAS  PubMed  Google Scholar 

  13. Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM (2014) Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 46:249–262

    Article  PubMed  Google Scholar 

  14. Gye J, Ahn SK, Kwon JE, Hong SP (2015) Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice. Dermatol Surg 41:378–386

    Article  CAS  PubMed  Google Scholar 

  15. Kim JE, Won CH, Bak H, Kositratna G, Manstein D, Dotto GP, Chang SE (2013) Gene profiling analysis of the early effects of ablative fractional carbon dioxide laser treatment on human skin. Dermatol Surg 39:1033–1043

    Article  CAS  PubMed  Google Scholar 

  16. Orringer JS, Rittié L, Baker D, Voorhees JJ, Fisher G (2010) Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 163:757–768

    Article  CAS  PubMed  Google Scholar 

  17. Helbig D, Paasch U (2011) Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 17:119–128

    Article  PubMed  Google Scholar 

  18. Orringer JS, Sachs DL, Shao Y, Hammerberg C, Cui Y, Voorhees JJ, Fisher GJ (2012) Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing. Dermatol Surg 38:1668–1677

    Article  CAS  PubMed  Google Scholar 

  19. Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, Weiss ID, Pal B, Wald O, Ad-El D, Fujii N, Arenzana-Seisdedos F, Jung S, Galun E, Gur E, Peled A (2006) Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol 126:468–476

    Article  CAS  PubMed  Google Scholar 

  20. Filippini M, Del Duca E, Negosanti F, Bonciani D, Negosanti L, Sannino M, Cannarozzo G, Nisticò SP (2016) Fractional CO2 laser: from skin rejuvenation to vulvo-vaginal reshaping. Photomed Laser Surg 35:171–175

    Article  PubMed  Google Scholar 

  21. Helbig D, Mobius A, Simon JC, Paasch U (2011) Heat shock protein 70 expression patterns in dermal explants in response to ablative fractional photothermolysis, microneedle, or scalpel wounding. Wounds 23:59–67

    PubMed  Google Scholar 

  22. Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39:96–107

    Article  PubMed  Google Scholar 

  23. Loreti EH, Pascoal VL, Nogueira BV, Silva IV, Pedrosa DF (2015) Use of laser therapy in the healing process: a literature review. Photomed Laser Surg 33:104–116

    Article  PubMed  Google Scholar 

  24. Orringer JS, Kang S, Johnson TM, Karimipour DJ, Hamilton T, Hammerberg C, Voorhees JJ, Fisher GJ (2004) Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin. Arch Dermatol 140:1326–1332

    PubMed  Google Scholar 

  25. Manolis EN, Kaklamanos IG, Spanakis N, Filippou DK, Panagiotaropoulos T, Tsakris A, Siomos K (2007) Tissue concentration of transforming growth factor beta1 and basic fibroblast growth factor in skin wounds created with a CO2 laser and scalpel: a comparative experimental study, using an animal model of skin resurfacing. Wound Repair Regen 15:252–257

    Article  PubMed  Google Scholar 

  26. Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G (2012) Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 7:e29999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Churko JM, Laird DW (2013) Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 28:190–198

    CAS  Google Scholar 

  28. Maytin EV (1995) Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J Invest Dermatol 104:448–455

    Article  CAS  PubMed  Google Scholar 

  29. XG X, Luo YJ, Wu Y, Chen JZ, TH X, Gao XH, He CD, Geng L, Xiao T, Zhang YQ, Chen HD, Li YH (2011) Immunohistological evaluation of skin responses after treatment using a fractional ultrapulse carbon dioxide laser on back skin. Dermatol Surg 37:1141–1149

    Article  Google Scholar 

  30. Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46:1291–1301

    Article  CAS  PubMed  Google Scholar 

  31. Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M (2001) Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 144:260–266

    Article  CAS  PubMed  Google Scholar 

  32. Zhou JD, Luo CQ, Xie HQ, Nie XM, Zhao YZ, Wang SH, Xu Y, Pokharel PB, Xu D (2008) Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy. Chin Med J 121:1269–1273

    CAS  PubMed  Google Scholar 

  33. Komi-Kuramochi A, Kawano M, Oda Y, Asada M, Suzuki M, Oki J, Imamura T (2005) Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol 186:273–289

    Article  CAS  PubMed  Google Scholar 

  34. Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS, Ozog D (2012) Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med 44:517–524

    Article  PubMed  Google Scholar 

  35. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A 89:6896–6900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Werner S (2011) A novel enhancer of the wound healing process: the fibroblast growth factor-binding protein. Am J Pathol 179:2144–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521

    CAS  PubMed  Google Scholar 

  38. Su Y, Richmond A (2015) Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle) 4:631–640

    Article  Google Scholar 

  39. Restivo TE, Mace KA, Harken AH, Young DM (2010) Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model. J Trauma 69:392–398

    Article  CAS  PubMed  Google Scholar 

  40. Kähäri VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213

    Article  PubMed  Google Scholar 

  41. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  PubMed  Google Scholar 

  42. Bullard KM, Mudgett J, Scheuenstuhl H, Hunt TK, Banda MJ (1999) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84:31–34

    Article  CAS  PubMed  Google Scholar 

  43. Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS, Brown TS (2010) Metalloproteinase expression is associated with traumatic wound failure. J Surg Res 159:633–639

    Article  CAS  PubMed  Google Scholar 

  44. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Melerzanov A, Lavrov A, Sakania L, Korsunskaya I, Petersen E, Sobelev V (2014) Effect of laser radiation on MMP gene expression in keratinocytes. Prime J 4–39

  46. Ozog DM, Liu A, Chaffins ML, Ormsby AH, Fincher EF, Chipps LK, Mi QS, Grossman PH, Pui JC, Moy RL (2013) Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol 149:50–57

    Article  PubMed  Google Scholar 

  47. Ross EV, Barnette DJ, Glatter RD, Grevelink JM (1999) Effects of overlap and pass number in CO2 laser skin resurfacing: a study of residual thermal damage, cell death, and wound healing. Lasers Surg Med 24:103–112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Schmitt.

Ethics declarations

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

L. Schmitt and S. Huth are equally contributing first authors

Electronic supplementary material

Fig. S1

Gene expression in laser-irradiated 3D skin models (microarray analysis) that were cultured in nutrient deficient medium. 3D skin models were harvested 5 days after laser treatment and gene expression was measured using the Affymetrix® Gene Chip Human Exon 2.0 ST array. (PDF 877 kb)

Fig. S2

Time dependent changes measured by TaqMan real-time PCR analysis on day 3 and 5 (models were cultured in nutrient deficient medium). (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, L., Huth, S., Amann, P.M. et al. Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models. Lasers Med Sci 33, 765–772 (2018). https://doi.org/10.1007/s10103-017-2409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2409-1

Keywords

Navigation