Skip to main content
Log in

In Silico Discovery of Novel Ligands for Antimicrobial Lipopeptides for Computer-Aided Drug Design

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The increase in antibiotic-resistant strains of pathogens has created havoc worldwide. These antibiotic-resistant pathogens require potent drugs for their inhibition. Lipopeptides, which are produced as secondary metabolites by many microorganisms, have the ability to act as potent safe drugs. Lipopeptides are amphiphilic molecules containing a lipid chain bound to the peptide. They exhibit broad-spectrum activities against both bacteria and fungi. Other than their antimicrobial properties, they have displayed anti-cancer properties as well, but their mechanism of action is not understood. In silico drug design uses computer simulation to discover and develop new drugs. This technique reduces the need of expensive and tedious lab work and clinical trials, but this method becomes a challenge due to complex structures of lipopeptides. Specific agonists (ligands) must be identified to initiate a physiological response when combined with a receptor (lipopeptide). In silico drug design and homology modeling talks about the interaction between ligands and the binding sites. This review summarizes the mechanism of selected lipopeptides, their respective ligands, and in silico drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ventola CL (2015) The antibiotic resistance crisis: part I: causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  2. Lee SY, Fan HW, Kuto JL, Nicolau DP (2006) Update on daptomycin: the first approved lipopeptide antibiotic. Expert Opin Pharmacother 7(10):1381–1397. https://doi.org/10.1517/14656566.7.10.1381

  3. Straus SK, Hancock RE (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. BBA-Biomembranes 1758:1215–1223

    Article  CAS  Google Scholar 

  4. Mandal SM, Barbosa AE, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31(2):338–345. https://doi.org/10.1016/j.biotechadv.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Pálffy R, Gardlik R, Behuliak M, Kadasi L, Turna J, Celec P (2009) On the physiology and pathophysiology of antimicrobial peptides. Mol Med 15(1-2):51–59. https://doi.org/10.2119/molmed.2008.00087

    Article  CAS  PubMed  Google Scholar 

  6. Rotem S, Mor A (2009) Antimicrobial peptides mimicsfor improved therapeutic properties. BBA-Biomembranes 1788(8):1582–1592. https://doi.org/10.1016/j.bbamem.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  7. Cotter C, Sturrock HJ, Hsiang MS, Liu J, Philips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RG (2013) The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet 382(9895):900–911. https://doi.org/10.1016/S0140-6736(13)60310-4

    Article  PubMed  Google Scholar 

  8. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3):381–390. https://doi.org/10.1016/j.jaad.2004.08.026

    Article  PubMed  Google Scholar 

  9. Rosenberg E, Ron E (1999) High and low molecular mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162. https://doi.org/10.1007/s002530051502

    Article  CAS  PubMed  Google Scholar 

  10. Schneider T, Müller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents—potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304(1):37–43. https://doi.org/10.1016/j.ijmm.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  11. Eswari JS, Anand M, Venkateswarlu (2016) Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization. Sadhana 41(1):55–65. https://doi.org/10.1007/s12046-015-0451-x

    Article  CAS  Google Scholar 

  12. von Döhren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97(7):2675–2706. https://doi.org/10.1021/cr9600262

    Article  Google Scholar 

  13. Stellar S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6(1):31–41. https://doi.org/10.1016/S1074-5521(99)80018-0

    Article  Google Scholar 

  14. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Coll Surf A Physicochem Eng Asp 152(1-2):3–10. https://doi.org/10.1016/S0927-7757(98)00627-X

    Article  CAS  Google Scholar 

  15. Yilmaz M, Soran H, Beyatli (2006) Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol Res 161(2):127–131. https://doi.org/10.1016/j.micres.2005.07.001

    Article  PubMed  Google Scholar 

  16. Patel S, Ahmed S, Eswari JS (2015) Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J Microbiol Biotechnol 31(8):1177–1193. https://doi.org/10.1007/s11274-015-1880-8

    Article  CAS  PubMed  Google Scholar 

  17. Kammeda Y, Matsui K, Kato H, Yanada T, Sagai H (1972) Antitumor activity of Bacillus natto. III. Isolation and characterization of a cytolytic substance on Ehrlich ascites carcinoma cells in the culture medium of Bacillus natto KMD 1126. Chem Pharm Bull 20(7):1551–1557. https://doi.org/10.1248/cpb.20.1551

    Article  Google Scholar 

  18. Kim SY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581(5):865–871. https://doi.org/10.1016/j.febslet.2007.01.059

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho KM (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131(4):1347–1354. https://doi.org/10.1016/j.foodchem.2011.09.133

    Article  CAS  Google Scholar 

  20. Hajare SN, Subramanian M, Gautam S, Sharma A (2013) Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D. Biochimie 95(9):1722–1731. https://doi.org/10.1016/j.biochi.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  21. Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:1

    Article  CAS  Google Scholar 

  22. Cao XH, Wang AH, Wang CL, Mao DZ, Lu MF, Cui YQ, Jiao RZ (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  Google Scholar 

  23. Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, Yan L, Zeng B (2009) Surfactin induces apoptosis and G2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55(3):163–171. https://doi.org/10.1007/s12013-009-9065-4

    Article  CAS  PubMed  Google Scholar 

  24. Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kuamr P, Sen R, Mandal M (2015) Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 5(1). https://doi.org/10.1038/srep10316

  25. Miao V, Coëffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr I, Bouchard M, Silva CJ, Wrigley SK, Baltz RH (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151(5):1507–1523. https://doi.org/10.1099/mic.0.27757-0

    Article  CAS  PubMed  Google Scholar 

  26. Streit JM, Jones RN, Sader HS (2004) Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram-positive organisms. J Antimicrob Chemother 53(4):669–674. https://doi.org/10.1093/jac/dkh143

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Ma T, Liu Q, Huang Y, Hu C, Liao G (2013) Improvement of daptomycin production in Streptomyces roseosporus through the acquisition of pleuromutilin resistance. Biomed Res Int 2013. https://doi.org/10.1155/2013/470418

  28. Ng IS, Ye C, Zhang Z, Lu Y, Jing K (2014) Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng 37(3):415–423. https://doi.org/10.1007/s00449-013-1007-2

    Article  CAS  PubMed  Google Scholar 

  29. Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 285(36):27501–27508. https://doi.org/10.1074/jbc.R110.128181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miao V, Coëffet-Le Gal MF, Nquyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH (2006) Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem Biol 13(3):269–276. https://doi.org/10.1016/j.chembiol.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  31. de Champdoré M, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4(13):183–191. https://doi.org/10.1098/rsif.2006.0174

    Article  CAS  PubMed  Google Scholar 

  32. Meena K, Saha D, Kumar R (2014) Isolation and partial characterization of iturin like lipopeptides (a bio-control agent) from a Bacillus subtilis strain. Int J Curr Mirobiol App Sci 3:121–126

    Google Scholar 

  33. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-Garcίa (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440. https://doi.org/10.1094/MPMI-20-4-0430

    Article  CAS  PubMed  Google Scholar 

  34. Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10(2):e0116871. https://doi.org/10.1371/journal.pone.0116871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim PI, Ryu J, Kim YH, ChI YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    CAS  PubMed  Google Scholar 

  36. Jin H, Li K, Niu Y, Guo M, Hu C, Chen S, Huang F (2015) Continuous enhancement of iturin A production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy. BMC Biotechnol 15(1):53. https://doi.org/10.1186/s12896-015-0172-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6(6):499–506. https://doi.org/10.1007/s00792-002-0287-2

    Article  CAS  PubMed  Google Scholar 

  38. Mizumoto S, Hirai M, Shoda M (2006) Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol 72(5):869–875. https://doi.org/10.1007/s00253-006-0389-3

    Article  CAS  PubMed  Google Scholar 

  39. Mizumoto S, Shoda M (2007) Medium optimization of antifungal lipopeptide, iturin a, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biotechnol 76(1):101–108. https://doi.org/10.1007/s00253-007-0994-9

    Article  CAS  PubMed  Google Scholar 

  40. Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75(6):1267–1274. https://doi.org/10.1007/s00253-007-0973-1

    Article  CAS  PubMed  Google Scholar 

  41. Iwase N, Rahman MS, Takashi A (2009) Production of iturin A homologues under different culture conditions. J Environ Sci 21:S28–S32. https://doi.org/10.1016/S1001-0742(09)60031-0

    Article  Google Scholar 

  42. Son S, Ko SK, Jang M, Kim JW, Kim GS, Lee JK, Jeon ES, Futamura Y, Ryoo IJ, Lee JS, Oh H, Hong YS, Kim BY, Takahashi S, Osada H, Jang JH, Ahn JS (2016) New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Marine Drugs 14:72

    Article  Google Scholar 

  43. Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79(3):808–815. https://doi.org/10.1128/AEM.02645-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83(19):e01075–e01017. https://doi.org/10.1128/AEM.01075-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan J, Li B, Zhang N, Waseem R, Shen Q, Huang Q (2012) Production of bacillomycin-and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J Agric Food Chem 60(12):2976–2981. https://doi.org/10.1021/jf204868z

    Article  CAS  PubMed  Google Scholar 

  46. Zhang B, Dong C, Shang Q, Cong Y, Kong W, Li P (2013) Purification and partial characterization of Bacillomycin L produced by Bacillus amyloliquefaciens K103 from lemon. Appl Biochem Biotechnol 171(8):2262–2272. https://doi.org/10.1007/s12010-013-0424-7

    Article  CAS  PubMed  Google Scholar 

  47. Peypoux F, Pommier MT, Das BC, Besson F, Delcambe L, Michel G (1984) Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot 37(12):1600–1604. https://doi.org/10.7164/antibiotics.37.1600

    Article  CAS  PubMed  Google Scholar 

  48. Besson F, Michel G (1992) Biosynthesis of bacillomycin D by Bacillus subtilis evidence for amino acid-activating enzymes by the use of affinity chromatography. FEBS Lett 308(1):18–21. https://doi.org/10.1016/0014-5793(92)81040-S

    Article  CAS  PubMed  Google Scholar 

  49. Tenoux I, Besson F, Michel G (1992) Studies on bacillomycin D biosynthesis by Bacillus subtilis. Microbios 74:29–37

    Google Scholar 

  50. Oleinikova GK, Dmitrenok AS, Voinov VG, Chaikina EL, Shevchenko LS, Kuznetsova TA (2005) Bacillomycin D from the marine isolate of Bacillus subtilis KMM 1922. Chem Nat Compd 41(4):461–464. https://doi.org/10.1007/s10600-005-0177-9

    Article  CAS  Google Scholar 

  51. Chen WC, Juang RS, Wei YH (2015) Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 103:158–169. https://doi.org/10.1016/j.bej.2015.07.009

    Article  CAS  Google Scholar 

  52. Gao L, Han J, Liu H, Qu X, Lu Z, Bie X (2017) Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie Van Leeuwenhoek 110(8):1007–1018. https://doi.org/10.1007/s10482-017-0874-y

    Article  CAS  PubMed  Google Scholar 

  53. Pathak KV, Bose A, Keharia H (2014) Identification and characterization of novel surfactins produced by fungal antagonist Bacillus amyloliquefaciens 6B. Biotechnol Appl Biochem 61(3):349–356. https://doi.org/10.1002/bab.1174

    Article  CAS  PubMed  Google Scholar 

  54. Preecha C, Sadowsky MJ, Prathuangwong S (2010) Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart J (Nat Sci) 44:84–99

    CAS  Google Scholar 

  55. Ruiz-Garcia C, Béjar V, Martίnez-Checa F, Llamas I, Quuesada E (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int J Syst Evol Microbiol 55(1):191–195. https://doi.org/10.1099/ijs.0.63310-0

    Article  CAS  PubMed  Google Scholar 

  56. Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18(12):1640–1648. https://doi.org/10.1016/j.chembiol.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  57. DeCrescenzo Henriksen E, Phillips D, Peterson J (2007) Polymyxin E production by P. amylolyticus. Lett Appl Microbiol 45(5):491–496. https://doi.org/10.1111/j.1472-765X.2007.02210.x

    Article  CAS  PubMed  Google Scholar 

  58. Stansly PG, Schlosser ME, Ananenko NH, Cook MH (1948) Studies on polymyxin: the production of fermentation liquor. J Bacteriol 55(4):573–578

    PubMed  PubMed Central  Google Scholar 

  59. Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132. https://doi.org/10.1074/jbc.M212364200

    Article  CAS  PubMed  Google Scholar 

  60. Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. BBA-Biomembranes 1462(1-2):1–10. https://doi.org/10.1016/S0005-2736(99)00197-2

    Article  CAS  PubMed  Google Scholar 

  61. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. https://doi.org/10.1038/415389a

    Article  CAS  PubMed  Google Scholar 

  62. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. BBA-Biomembranes 1462(1):55–70

    Article  CAS  Google Scholar 

  63. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352. https://doi.org/10.1021/bi000946l

    Article  CAS  PubMed  Google Scholar 

  64. Yang L, Weiss TM, Lehrer RI, Huang HW (2010) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009

    Article  Google Scholar 

  65. Papo N, Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62(7-8):784–790. https://doi.org/10.1007/s00018-005-4560-2

    Article  CAS  PubMed  Google Scholar 

  66. Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38(22):7235–7242. https://doi.org/10.1021/bi9826299

    Article  CAS  PubMed  Google Scholar 

  67. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43(6):1317–1323

    Article  CAS  Google Scholar 

  68. Westerhoff HV, Hendler RW, Zasloff M, Juretić D (1989) Interactions between a new class of eukaryotic antimicrobial agents and isolated rat liver mitochondria. Biochim Biophys Acta Bioenerget 975(3):361–369. https://doi.org/10.1016/S0005-2728(89)80344-5

    Article  CAS  Google Scholar 

  69. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40(10):3016–3026. https://doi.org/10.1021/bi002656a

    Article  CAS  PubMed  Google Scholar 

  70. Bierbaum G, Sahl HG (1985) Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141(3):249–254. https://doi.org/10.1007/BF00408067

    Article  CAS  PubMed  Google Scholar 

  71. Thennarasu S, Lee DK, Tan A, Prasad Kari U, Ramamoorthy A (2005) Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. BBA-Biomembranes 1711:49–58

    Article  CAS  Google Scholar 

  72. Avrahami D, Shai Y (2004) A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279(13):12277–12285. https://doi.org/10.1074/jbc.M312260200

    Article  CAS  PubMed  Google Scholar 

  73. Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47(8):2538–2544. https://doi.org/10.1128/AAC.47.8.2538-2544.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. British J Pharmacol 152:21–37

    Article  CAS  Google Scholar 

  75. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S (2013) In-silico drug design: an approach which revolutionarised the drug discovery process. OA Drug Des Deliv 1:3

    Google Scholar 

  76. Krieger E, Nabuurs SB, Vriend G (2003) Homology modeling. Methods Biochem Anal 44:509–524

    CAS  PubMed  Google Scholar 

  77. Barry AL, Fuchs PC, Brown SD (2001) In vitro activities of daptomycin against 2,789 clinical isolates from 11 North American medical centers. Antimicrob Agents Chemother 45(6):1919–1922. https://doi.org/10.1128/AAC.45.6.1919-1922.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ball LJ, Goult CM, Donarski JA, Micklefield J, Ramesh V (2004) NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org Biomol Chem 2(13):1872–1878. https://doi.org/10.1039/b402722a

    Article  CAS  PubMed  Google Scholar 

  79. Jung D, Rozek A, Okon M, Hancock RE (2004) Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11(7):949–957. https://doi.org/10.1016/j.chembiol.2004.04.020

    Article  CAS  PubMed  Google Scholar 

  80. Baltz RH, Brian P, Miao V, Wrigley SK (2006) Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol 33(2):66–74. https://doi.org/10.1007/s10295-005-0030-y

    Article  CAS  PubMed  Google Scholar 

  81. Mascio CT, Alder JD, Silverman JA (2007) Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51(12):4255–4260. https://doi.org/10.1128/AAC.00824-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolf D, Domίnguez-Cuevas P, Daniel RA, Mascher T (2012) Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis. Antimicrob Agents Chemother 56(11):5907–5915. https://doi.org/10.1128/AAC.00770-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Silverman J, Harris B, Cotroneo N, Beveridge T (2003) Daptomycin (DAP) treatment induces membrane and cell wall alterations in Staphylococcus aureus. in Interscience conference on antimicrobial agents and chemotherapy, Chicago

  84. Canepari P, Boaretti M, Lleó MM, Satta G (1990) Lipoteichoic acid as a new target for activity of antibiotics: mode of action of daptomycin (LY146032). Antimicrob Agents Chemother 34:1220–1226

    Article  CAS  Google Scholar 

  85. Fuchs PC, Barry AL, Brown SD (2002) In vitro bactericidal activity of daptomycin against staphylococci. J Antimicrob Chemother 49(3):467–470. https://doi.org/10.1093/jac/49.3.467

    Article  CAS  PubMed  Google Scholar 

  86. Cha R, Rybak MJ (2004) Influence of protein binding under controlled conditions on the bactericidal activity of daptomycin in an in vitro pharmacodynamic model. J Antimicrob Chemother 54(1):259–262. https://doi.org/10.1093/jac/dkh259

    Article  CAS  PubMed  Google Scholar 

  87. Maget-Dana R, Ptak M, Peypoux F, Michel G (1985) Pore-forming properties of iturin A, a lipopeptide antibiotic. (BBA)-Biomembranes 815:405–409

    Article  CAS  Google Scholar 

  88. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87(1-3):151–174. https://doi.org/10.1016/0300-483X(94)90159-7

    Article  CAS  PubMed  Google Scholar 

  90. Latoud C, Peypoux F, Michel G (1987) Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: modifications of membrane permeability and lipid composition. J Antibiot 40(11):1588–1595. https://doi.org/10.7164/antibiotics.40.1588

    Article  CAS  PubMed  Google Scholar 

  91. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. (BBA)-Biomembranes 1713(1):51–56. https://doi.org/10.1016/j.bbamem.2005.05.003

    Article  CAS  Google Scholar 

  92. Zhang B, Dong C, Shang Q, Han Y, Li P (2013) New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. (BBA)-Biomembranes 1828:2230–2237

    Article  CAS  Google Scholar 

  93. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494. https://doi.org/10.1016/0006-291X(68)90503-2

    Article  CAS  PubMed  Google Scholar 

  94. Sandrin C, Peypoux F, Michel G (1990) Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol Appl Biochem 12(4):370–375

    CAS  PubMed  Google Scholar 

  95. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204(1):1–8. https://doi.org/10.1006/jcis.1998.5558

    Article  CAS  PubMed  Google Scholar 

  96. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219. https://doi.org/10.1128/AEM.68.12.6210-6219.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kakinuma A, Hori M, Sugino H, Yoshida I, Isono M, Tamura G, Arima K (1969) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33(6):973–976. https://doi.org/10.1080/00021369.1969.10859409

    Article  CAS  Google Scholar 

  98. Sumi CD, Yang BW, Yeo IC, Hahm YT (2014) Antimicrobial peptides of the genus bacillus: a new era for antibiotics. Cad J Microbiol 61:93–103

    Article  Google Scholar 

  99. Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  100. Liu X, Huang W, Wang E (2005) An electrochemical study on the interaction of surfactin with a supported bilayer lipid membrane on a glassy carbon electrode. J Electroanal Chem 577(2):349–354. https://doi.org/10.1016/j.jelechem.2004.12.010

    Article  CAS  Google Scholar 

  101. Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68(5):1937–1943. https://doi.org/10.1016/S0006-3495(95)80370-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heerklotz H, Wieprecht T, Seelig J (2004) Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. J Phys Chem B 108(15):4909–4915. https://doi.org/10.1021/jp0371938

    Article  CAS  Google Scholar 

  103. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. (BBA)-Biomembranes 1611(1-2):91–97. https://doi.org/10.1016/S0005-2736(03)00029-4

    Article  CAS  Google Scholar 

  104. Thimon L, Peypoux F, Dana Maget R, Roux B, Michel G (1992) Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnol Appl Biochem 16(2):144–151

    CAS  PubMed  Google Scholar 

  105. Ohno A, Ano T, Shoda M (1995) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80(5):517–519. https://doi.org/10.1016/0922-338X(96)80930-5

    Article  CAS  Google Scholar 

  106. Walsh CT, Gehring AM, Weinreb PH, Quadri LE, Flugel RS (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1(3):309–315. https://doi.org/10.1016/S1367-5931(97)80067-1

    Article  CAS  PubMed  Google Scholar 

  107. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzym Microb Technol 27(10):749–754. https://doi.org/10.1016/S0141-0229(00)00295-7

    Article  CAS  Google Scholar 

  108. Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191(10):3350–3358. https://doi.org/10.1128/JB.01728-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure--activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916. https://doi.org/10.1021/jm900999h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 111:551–563

    Article  CAS  Google Scholar 

  111. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422. https://doi.org/10.1016/S0140-6736(97)80051-7

    Article  CAS  PubMed  Google Scholar 

  112. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88. https://doi.org/10.1016/S0167-7799(97)01156-6

    Article  CAS  PubMed  Google Scholar 

  113. Powers JPS, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. https://doi.org/10.1016/j.peptides.2003.08.023

    Article  CAS  PubMed  Google Scholar 

  114. Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250. https://doi.org/10.1038/nrmicro2095

    Article  CAS  PubMed  Google Scholar 

  115. Bruch MD, Cajal Y, Koh JT, Jain MK (1999) Higher-order structure of polymyxin B: the functional significance of topological flexibility. J Am Chem Soc 121(51):11993–12004. https://doi.org/10.1021/ja992376m

    Article  CAS  Google Scholar 

  116. Pristovšek P, Kidric J (1999) Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem 42(22):4604–4613. https://doi.org/10.1021/jm991031b

    Article  CAS  PubMed  Google Scholar 

  117. Pristovsek P, Kidric J (2004) The search for molecular determinants of LPS inhibition by proteins and peptides. Curr Top Med Chem 4(11):1185–1201. https://doi.org/10.2174/1568026043388105

    Article  CAS  PubMed  Google Scholar 

  118. Cajal Y, Berg OG, Jain MK (1995) Direct vesicle-vesicle exchange of phospholipids mediated by polymyxin B. Biochem Biophys Res Commun 210(3):746–752. https://doi.org/10.1006/bbrc.1995.1722

    Article  CAS  PubMed  Google Scholar 

  119. Cajal Y, Ghanta J, Easwaran K, Surolia A, Jain MK (1996) Specificity for the exchange of phospholipids through polymyxin B mediated intermembrane molecular contacts. Biochemistry 35(18):5684–5695. https://doi.org/10.1021/bi952703c

    Article  CAS  PubMed  Google Scholar 

  120. Clausell A, Rabanal F, Garcia-Subirats M, Asunción Alsina M, Cajal Y (2005) Synthesis and membrane action of polymyxin B analogues. Luminescence 20(3):117–123. https://doi.org/10.1002/bio.810

    Article  CAS  PubMed  Google Scholar 

  121. Clausell A, Rabanal F, Garcia-Subirats M, Asunción Alsina M, Cajal Y (2006) Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives. J Phys Chem B 110(9):4465–4471. https://doi.org/10.1021/jp0551972

    Article  CAS  PubMed  Google Scholar 

  122. Cajal Y, Rogers J, Berg OG, Jain MK (1996) Intermembrane molecular contacts by polymyxin B mediate exchange of phospholipids. Biochemistry 35(1):299–308. https://doi.org/10.1021/bi9512408

    Article  CAS  PubMed  Google Scholar 

  123. JT O, Cajal Y, Skowronska EM, Belkin S, Chen J, Van Dyk TK, Sasser M, Jain MK (2000) Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. (BBA)-Biomembranes 1463:43–54

    Article  Google Scholar 

  124. Oh JT, Van Dyk TK, Cajal Y, Dhurjati PS, Sasser M, Jain MK (1998) Osmotic stress in ViableEscherichia colias the basis for the antibiotic response by Polymyxin B. Biochem Biophys Res Commun 246:619–623

    Article  CAS  Google Scholar 

  125. McCoy LS, Roberts KD, Nation RL, Thompson PE, Velkov T, Li J, Tor Y (2013) Polymyxins and analogues bind to ribosomal RNA and interfere with eukaryotic translation in vitro. Chembiochem 14(16):2083–2086. https://doi.org/10.1002/cbic.201300496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Simmons KJ, Chopra I, Fishwick CW (2010) Structure-based discovery of antibacterial drugs. Nat Rev Microbiology 8(7):501–510. https://doi.org/10.1038/nrmicro2349

    Article  CAS  PubMed  Google Scholar 

  127. Staker BL, Buchko GW, Myler PJ (2015) Recent contributions of structure-based drug design to the development of antibacterial compounds. Curr Opin Microbiol 27:133–138. https://doi.org/10.1016/j.mib.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu H, Gao L, Han J, Ma Z, Lu Z, Dai C, Zhang C, Bie X (2016) Biocombinatorial synthesis of novel lipopeptides by COM domain-mediated reprogramming of the plipastatin NRPS complex. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01801

  129. Velkov T, Thompson PE, Nation RL, Li J (2009) Structure−activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916

    Article  Google Scholar 

  130. Verma A, Kumar A, Debnath M (2016) Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils. Med Chem Res 25(8):1616–1622. https://doi.org/10.1007/s00044-016-1594-y

    Article  CAS  Google Scholar 

  131. Eswari J, Dhagat S, Kaser S, Tiwari A (2017) Homology modeling and molecular docking studies of Bacillomycin and Iturin synthetases with novel ligands for the production of therapeutic lipopeptides. Curr Drug Discov Technol.​ https://doi.org/​10.2174/1570163814666170816112536

  132. Batool M, Khalid MH, Hassan MN, Yusuf HF (2011) Homology modeling of an antifungal metabolite plipastatin synthase from the Bacillus subtilis 168. Bioinformation 7(8):384–387. https://doi.org/10.6026/97320630007384

    Article  PubMed  PubMed Central  Google Scholar 

  133. Satya Eswari J, Mohan Anand, Chimmiri Venkateswarlu, (2013) Optimum culture medium composition for rhamnolipid production by pseudomonas aeruginosa AT10 using a novel multi-objective optimization method. Journal of Chemical Technology & Biotechnology 88 (2):271-279.

  134. Satya Eswari J and Ch.Venkateswarlu (2015) Dynamic Modelling and Metabolic Flux Analysis for Optimized Production of Rhamnolipids. Chemical engineering communications 205: 0098-6445,1563-5201.

  135. Satya Eswari J and Ch Venkateswarlu (2016) Multiobjective simultaneous Optimization of the biosurfactant process by integrating differential evolution with Artificial Neural Network. Indian Journal of Chemical Technology 23: 335-344.

  136. Satya Eswari J, Kannekanti kavya, (2016) Optimal feed profile for the Rhamnolipid kinetic models by using Tabu search: metabolic view point. AMB Express 6:116.

Download references

Acknowledgements

We are thankful to National Institute of Technology Raipur and Chhattisgarh Council of Science and Technology (CCOST) (Project number 2487/CCOST/MRP/2016, Raipur dated 25.01.2016), India for providing the necessary facilities to prepare the manuscript and permission to publish it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Eswari Jujjavarapu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jujjavarapu, S.E., Dhagat, S. In Silico Discovery of Novel Ligands for Antimicrobial Lipopeptides for Computer-Aided Drug Design. Probiotics & Antimicro. Prot. 10, 129–141 (2018). https://doi.org/10.1007/s12602-017-9356-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9356-9

Keywords

Navigation