Skip to main content
Log in

Thermo-Mechanical Properties of Soft Candy: Application of Time-Temperature Superposition to Mimic Response at High Deformation Rates

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Soft candy primarily consists of an amorphous sugar matrix with highly adhesive and cohesive characteristics, which is generated by rapid cooling of a supersaturated sugar solution. The integration of fondant in soft candy leads to a partial recrystallization of the amorphous sugar so that the dispersed sugar crystals disrupt the continuous amorphous phase; this lowers cohesiveness, and creates a short texture that is responsible for a more brittle fracture. Final processing (e.g., cutting and packaging) is usually done at temperatures between 25 and 45 °C and short time scale. This study analyzed the effects of temperature and time scale on thermo-mechanical properties of different types of soft candy. The application of time-temperature superposition principle on small amplitude oscillatory shear experiments resulted in master curves that covered a frequency window up to 105 rad/s, hence a time scale that is relevant in rapid processing. The respective shift factors depend on material properties, and a main factor of influence is the presence of a crystalline phase. Simple penetration and tensile tests give additional information on material behavior, especially with respect to effects of temperature on adhesiveness and cohesiveness. The results of the study provide support for further optimizing soft candy formulations to ensure rapid and undisturbed processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This observation was made by the authors during comparative tasting of the samples.

References

  1. R.W. Hartel, R. Ergun, S. Vogel, Phase/State Transitions of Confectionery Sweeteners: Thermodynamic and Kinetic Aspects. Comp. Rev. Food Sci. Food Safety 10(1), 17–32 (2011). https://doi.org/10.1111/j.1541-4337.2010.00136.x

  2. P. Hull, Glucose Syrups. Technology and Applications (Wiley-Blackwell, Hoboken, 2010). https://doi.org/10.1002/9781444314748

    Book  Google Scholar 

  3. T.B. Wagoner, P.J. Luck, E.A. Foegeding, J. Food Sci. 81, 736 (2016)

    Article  Google Scholar 

  4. F.A. Mohos, Confectionery and Chocolate Engineering. Principles and Applications (Wiley-Blackwell, Hoboken, 2010). https://doi.org/10.1002/9781444320527

    Book  Google Scholar 

  5. P. Gabarra, R.W. Hartel, Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose. J. Food Sci. 63(3), 523–528 (1998). https://doi.org/10.1111/j.1365-2621.1998.tb15778.x

    Article  CAS  Google Scholar 

  6. Y. Liu, B. Bhandari, W. Zhou, Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J. Agric. Food Chem. 54(16), 5701–5717 (2006). https://doi.org/10.1021/jf060188r

    Article  CAS  Google Scholar 

  7. E. Miller, R.W. Hartel, Sucrose crystallization in caramel. J. Food Eng. 153, 28–38 (2015). https://doi.org/10.1016/j.jfoodeng.2014.11.028

    Article  Google Scholar 

  8. G. Sengar, H.K. Sharma, Food caramels: a review. J. Food Sci. Technol. 51(9), 1686–1696 (2014). https://doi.org/10.1007/s13197-012-0633-z

    Article  CAS  Google Scholar 

  9. A.P. Singh, R.S. Lakes, S. Gunasekaran, Viscoelastic characterization of selected foods over an extended frequency range. Rheol. Acta 46(1), 131–142 (2006). https://doi.org/10.1007/s00397-006-0107-1

    Article  Google Scholar 

  10. J. Ahmed, H.S. Ramaswamy, P.K. Pandey, Dynamic rheological and thermal characteristics of caramels. LWT Food Sci. Technol. 39(3), 216–224 (2006). https://doi.org/10.1016/j.lwt.2005.01.012

    Article  CAS  Google Scholar 

  11. C. W. Macosko, in Rheology. Principles, Measurements and Applications, ed. By C. W. Maco (Wiley-VCH, New York, 1994). p. 109

  12. R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1998)

  13. R.S. Lakes, Viscoelastic measurement techniques. Rev. Sci. Instr. 75(4), 797–810 (2004). https://doi.org/10.1063/1.1651639

    Article  CAS  Google Scholar 

  14. I. Rivals, L. Personnaz, C. Creton, F. Simal, P. Roose, S. Van Es, Mech. Sci. Technol. 16, 2020 (2005)

    CAS  Google Scholar 

  15. R. Kieffer, F. Garnreiter, H.-D. Belitz, Beurteilung von Teigeigenschaften durch Zugversuche im Mikromaßstab. Z. Lebensm. Unters. Forsch. 172(3), 193–194 (1981). https://doi.org/10.1007/BF01330937

    Article  CAS  Google Scholar 

  16. A.E. Steiner, E.A. Foegeding, M. Drake, Descriptive analysis of caramel texture. J. Sensory Stud. 18(4), 277–289 (2003). https://doi.org/10.1111/j.1745-459X.2003.tb00390.x

  17. A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey. J. Food Eng. 45(4), 219–224 (2000). https://doi.org/10.1016/S0260-8774(00)00062-5

    Article  Google Scholar 

  18. S. Kasapis, Advanced topics in the application of the WLF/free volume theory to high sugar/biopolymer mixtures: a review. Food Hydrocoll. 15(4-6), 631–641 (2001). https://doi.org/10.1016/S0268-005X(01)00048-0

    Article  CAS  Google Scholar 

  19. J. Olkku, C.K. Rha, Textural parameters of candy licorice. J. Food Sci. 40(5), 1050–1054 (1975). https://doi.org/10.1111/j.1365-2621.1975.tb02265.x

    Article  Google Scholar 

  20. B.J. Dobraszczyk, The rheological basis of dough stickiness. J. Texture Stud. 28(2), 139–162 (1997). https://doi.org/10.1111/j.1745-4603.1997.tb00108.x

    Article  Google Scholar 

  21. L. Bokobza, Kgk-Kautschuk Gummi Kunstst. 62, 23 (2009)

    Google Scholar 

  22. D.J. Kohls, G. Beaucage, Rational design of reinforced rubber. Curr. Opin. Solid State Mater. Sci. 6(3), 183–194 (2002). https://doi.org/10.1016/S1359-0286(02)00073-6

    Article  CAS  Google Scholar 

  23. J.S. Temenoff, A.G. Mikos, Biomaterials: The Intersection of Biology and Materials Science (Prentice Hall, New York, 2008)

    Google Scholar 

Download references

Acknowledgements

This work was funded by Zentrales Innovationsprogramm Mittelstand (ZIM), German Federal Ministry of Economic Affairs and Energy (grant number KF2049814PK3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Schmidt.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, C., Bornmann, R., Schuldt, S. et al. Thermo-Mechanical Properties of Soft Candy: Application of Time-Temperature Superposition to Mimic Response at High Deformation Rates. Food Biophysics 13, 11–17 (2018). https://doi.org/10.1007/s11483-017-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9506-3

Keywords

Navigation