Skip to main content
Log in

Vector solutions with clustered peaks for nonlinear fractional Schrödinger systems in \(\mathbb {R}^{N}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the fractional nonlinear Schrödinger system

$$\begin{aligned} \left\{ \begin{array}{ll} \epsilon ^{2s}(-\Delta )^s u +P_1( x)u=\mu _1 |u|^{2p-2}u+\beta |v|^p|u|^{p-2}u, \quad x\in \mathbb {R}^N,\\ \epsilon ^{2s}(-\Delta )^s v +P_2( x)v=\mu _2 |v|^{2p-2}v+\beta |u|^p|v|^{p-2}v, \quad \; x\in \mathbb {R}^N,\\ \end{array} \right. \end{aligned}$$

where \(\epsilon >0\) is a small parameter, \(0<s<1,\) \(P_1\) and \(P_2\) are positive potentials, \(\mu _1>0,~\mu _2>0\), and \(\beta \in \mathbb {R}\) is a coupling constant. To construct solutions to this system, we use the Lyapunov–Schmidt reduction that takes advantage of the variational structure of the problem. For any positive integer \(k\ge 2\), we construct k interacting spikes concentrating near the local maximum point \(x_{0}\) of \(P_1\) and \(P_2\) when \(P_{1}(x_{0})=P_{2}(x_{0})\) in the attractive case. For any two positive integers \(k,m\ge 2\), we construct k interacting spikes for u near the local maximum point \(x_{1,0}\) of \(P_1\) and m interacting spikes for v near the local maximum point \(x_{2,0}\) of \(P_2\), respectively, when \(x_{1,0}\ne x_{2,0}\). For \(s = 1\), this corresponds to the system studied by Peng and Pi (Discrete Contin Dyn Syst 36:2205–2227, 2016) for the classical nonlinear Schrödinger system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, V.: Multiplicity of solutions for fractional Schrödinger systems in \(\mathbb{R}^N\), arXiv:1703.04370v1

  2. Alves, C., Miyagaki, O.: Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^N\) via penalization method. Calc. Var. Partial Differ. Equ. 55, 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham; Unione Matematica Italiana, Bologna (2016)

  5. Chen, W., Deng, S.: The Nehari manifold for a fractional p-Laplacian system involving concave–convex nonlinearities. Nonlinear Anal. Real World Appl. 27, 80–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some nonlocal semilinear equations. Commun. Partial Differ. Eqs. 36, 1353–1384 (2011)

    Article  MATH  Google Scholar 

  7. Cao, D., Peng, S.: Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Commun. Partial Differ. Eqs. 34, 1566–1591 (2009)

    Article  MATH  Google Scholar 

  8. Colorado, E., de Pablo, A., Sánchez, U.: Perturbations of a critical fractional equation. Pac. J. Math. 271, 65–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Eqs. 32, 1245–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dávila, J., Del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8, 1165–1235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dávila, J., Del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Eqs. 256, 858–892 (2014)

    Article  MATH  Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dipierro, S., Pinamonti, A.: A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian. J. Differ. Eqs. 255, 85–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, R.L., Lenzmann, E.: Uniqueness and nondegeneracy of ground states for \((-\Delta )^{s}Q + Q - Q^{\alpha +1} = 0\) in \({\mathbb{R}}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  15. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. https://doi.org/10.1002/cpa.21591

  16. Fall, M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  18. Guo, Q., He, X.: Least energy solutions for a weakly coupled fractional Schrödinger system. Nonlinear Anal. 132, 141–159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, Q., Peng, S., Peng, Y.: Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic system. Adv. Differ. Eqs. 22, 867–892 (2017)

    MathSciNet  MATH  Google Scholar 

  20. He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15, 1285–1308 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. Partial Differ. Eqs. 55, 1–39 (2016)

    Article  MATH  Google Scholar 

  22. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Eqs. 5, 899–928 (2000)

    MATH  Google Scholar 

  23. Liu, W.: Multi-peak positive solutions for nonlinear fractional Schrödinger systems in \({\mathbb{R}}^N\). Adv. Nonlinear Stud. 2, 231–247 (2016)

    MATH  Google Scholar 

  24. Li, Y., Ma, P.: Symmetry of solutions for a fractional system. Sci. China Math. 60, 1805–1824 (2017)

    Article  MathSciNet  Google Scholar 

  25. Lin, F., Ni, W., Wei, J.: on the number of interior peak solutions for a singularly perturbed Neumann problem. Commun. Pure Appl. Math. 60, 252–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Noussair, E.S., Yan, S.: On positive multipeak solutions of a nonlinear elliptic problem. J. Lond. Math. Soc. 62, 213–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng, S., Pi, H.: Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 36, 2205–2227 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng, S., Wang, Z.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208, 305–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quaas, A., Xia, A.: Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian. Commun. Contemp. Math. https://doi.org/10.1142/S0219199717500328

  30. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Q.: Positive least energy solutions of fractional Laplacian systems with critical exponent. Electron. J. Differ. Eqs. 2016(150), 1–16 (2016)

    Google Scholar 

  35. Wei, Y., Su, X.: Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc. Var. Partial Differ. Eqs. 52, 95–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Liu.

Additional information

W. Liu was supported by NSFC [Grant No. 11601139]; M. Niu was supported by Beijing Postdoctoral Research Foundation [2017-ZZ-040]; Y. Peng was supported by NSFC [Grant No. 11501143] and the Ph.D. launch scientific research projects of Guizhou Normal University [2014].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Niu, M. & Peng, Y. Vector solutions with clustered peaks for nonlinear fractional Schrödinger systems in \(\mathbb {R}^{N}\) . Z. Angew. Math. Phys. 68, 142 (2017). https://doi.org/10.1007/s00033-017-0892-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0892-7

Mathematics Subject Classification

Keywords

Navigation