Skip to main content
Log in

Resonant oscillations in open axisymmetric tubes

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to \(k=0\). The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. \(k\rightarrow 0\). Detailed analysis for both the tube and cone in the limit of small forcing \((O(\varepsilon ^{3}))\) is carried out, where \(\varepsilon ^{3}\) is the Mach number of the forcing function and the resulting flow has Mach number \(O(\varepsilon )\). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of \(O(\varepsilon )\). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of \(O(\varepsilon ^{2})\) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chester, W.: Resonant oscillations in closed tubes. J. Fluid Mech. 18, 44–64 (1964)

    Article  MATH  Google Scholar 

  2. Chester, W.: Resonant oscillations of a gas in an open-ended tube. Proc. R. Soc. Lond. A 377, 449–467 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chun, Y.-D., Kim, Y.-H.: Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes. J. Acoust. Soc. Am. 108(6), 2765–2774 (2000)

    Article  Google Scholar 

  4. Collins, W.D.: Forced oscillations of systems governed by one-dimensional nonlinear wave equations. Q. J. Mech. Appl. Math. 24(2), 457–466 (1971)

    Article  MathSciNet  Google Scholar 

  5. Cox, E.A., Kluwick, A.: Resonant gas oscillations exhibiting mixed nonlinearity. J. Fluid Mech. 318, 251–271 (1996)

    Article  MATH  Google Scholar 

  6. Disselhorst, J.H.M., van Wijngaarden, L.: Flow in the exit of open pipes during acoustic resonance. J. Fluid Mech. 99, 293–319 (1980)

    Article  MathSciNet  Google Scholar 

  7. Ilinskii, Y.A., Lipkens, B., Lucas, T.S., Van Doren, T.W.: Nonlinear standing waves in an acoustical resonator. J. Acoust. Soc. Am. 104(5), 2664–2674 (1998)

    Article  Google Scholar 

  8. Jimenez, J.: Nonlinear gas oscillations in pipes. Part 1. Theory. J. Fluid Mech. 59, 23–46 (1973)

    Article  MATH  Google Scholar 

  9. Keller, J.B., Ting, L.: Periodic vibrations of systems governed by nonlinear partial differential equations. Commun. Pure Appl. Math. 19(4), 371–420 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keller, J.J.: Resonant oscillations in open tubes. Z. Angew. Math. Phys. ZAMP 28, 237–263 (1977)

    Article  MATH  Google Scholar 

  11. Lawrenson, C.C., Lipkens, B., Lucas, T.S., Perkins, D.K., Van Doren, T.W.: Measurements of macrosonic standing waves in oscillating closed cavities. J. Acoust. Soc. Am. 104(2), 623–636 (1998)

    Article  Google Scholar 

  12. Lettau, E.: Messungen und Gasschwingungen großer Amplitude in Rohrleitungen. Deut. Kraftfahr. 39, 1–17 (1939)

    Google Scholar 

  13. Mortell, M.P., Seymour, B.R.: Standing waves in an open pipe: a nonlinear initial-boundary value problem. Z. Angew. Math. Phys. ZAMP 24, 473–487 (1973)

    Article  MATH  Google Scholar 

  14. Mortell, M.P., Seymour, B.R.: Nonlinear resonant oscillations in closed tubes of variable cross-section. J. Fluid Mech. 519, 183–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ockendon, H., Ockendon, J.R.: Nonlinearity in fluid resonances. Meccanica 36, 297–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mortell, M.P., Seymour, B.R.: Nonlinear Waves in Bounded Media: The Mathematics of Resonance. World Scientific Press, Singapore (2017)

    Book  MATH  Google Scholar 

  17. Seymour, B.R., Mortell, M.P.: Nonlinear resonant oscillations in open tubes. J. Fluid Mech. 60, 733–750 (1973)

    Article  MATH  Google Scholar 

  18. Stuhlträger, E., Thoman, H.: Oscillations of a gas in an open-ended tube near resonance. Z. Angew. Math. Phys. ZAMP 37, 155–175 (1986)

    Article  MATH  Google Scholar 

  19. Sturtevant, B.: Nonlinear gas oscillations in pipes. Part 2. Experiment. J. Fluid Mech. 63, 97–120 (1974)

    Article  Google Scholar 

  20. Tkachenko, L.A., Sergienko, M.V.: Resonant oscillations of gas in an open tube in the shock-free wave mode. Acoust. Phys. 62(1), 51–57 (2016)

    Article  Google Scholar 

  21. Webster, A.G.: Acoustical impedance, and the theory of horns and of the phonograph. Proc. Natl. Acad. Sci. USA 5, 275–282 (1919)

    Article  Google Scholar 

  22. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  23. van Wijngaarden, L.: On the oscillations near resonance in open pipes. J. Eng. Math. 2(3), 225–240 (1968)

    Article  MATH  Google Scholar 

  24. Zaripov, R.G., Ilgamov, M.A.: Non-linear gas oscillations in a pipe. J. Sound Vib. 46(2), 245–257 (1976)

    Article  Google Scholar 

  25. Zaripov, E.: Nonlinear gas oscillations in an open tube. Akust. J. 23, 378–383 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Amundsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amundsen, D.E., Mortell, M.P. & Seymour, B.R. Resonant oscillations in open axisymmetric tubes. Z. Angew. Math. Phys. 68, 139 (2017). https://doi.org/10.1007/s00033-017-0888-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0888-3

Mathematics Subject Classification

Keywords

Navigation