Skip to main content

Advertisement

Log in

Conjugated system in metal-free 1D polyaniline nanotubes/carbon nitride hollow composites with strong adsorption and enhanced visible-light photocatalytic activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal-free 1D polyaniline nanotubes/carbon nitride (PNCN) hollow composites are fabricated by self-assembly chemisorption and solvent evaporation method for the first time. The results show that carbon nitride (g-C3N4) is successfully covered onto polyaniline (PANI) nanotubes. Due to similar electronic structures of nitrogen-rich materials of PANI and g-C3N4, the combination of two π-conjugated system not only benefits the separation of photogenerated charge carriers but also increases the light absorption range of g-C3N4. The compact contact of the PANI nanotubes and g-C3N4 nanosheets as well as their matched energy level is the determinant factor for interfacial heterojunction. Specially, the hollow 1D “Janus” heterojunction impels photogenerated charge pairs to separate and transfer to opposite directions in a short diffusion path, with the additional benefits of exposure of more active sites and transmission of reactants for catalytic surface reactions. As expected, PNCN composites are photoactive and exhibit enhanced photocatalytic performance under visible-light irradiation over pure g-C3N4 and PANI nanotubes. In addition, PNCN composites possess strong adsorption capacity. This versatile 1D PNCN hollow composites prepared from a cost-effective and green process have potential applications in catalysis, drug delivery system, sensors, and energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 10, 402 (2017)

    Article  Google Scholar 

  2. J.C. Colmenares, ChemSusChem 7, 1512 (2014)

    Article  Google Scholar 

  3. C. Han, N. Zhang, Y.J. Xu, Nano Today 11, 351 (2016)

    Article  Google Scholar 

  4. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43, 5234 (2014)

    Article  Google Scholar 

  5. S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150 (2015)

    Article  Google Scholar 

  6. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 6717 (2012)

    Article  Google Scholar 

  7. J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 49, 441 (2010)

    Article  Google Scholar 

  8. X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596 (2012)

    Article  Google Scholar 

  9. G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. Photochem. Photobiol. C 20, 33 (2014)

    Article  Google Scholar 

  10. L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Mater. Res. Bull. 48, 3919 (2013)

    Article  Google Scholar 

  11. Q. Liang, J. Jin, C. Liu, S. Xu, C. Yao, Z. Chen, Z. Li, J. Mater. Sci. Mater. Electron. 28, 11279 (2017)

    Article  Google Scholar 

  12. H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Ind. Eng. Chem. Res. 53, 8018 (2014)

    Article  Google Scholar 

  13. C. Li, S. Wang, T. Wang, Y. Wei, P. Zhang, J. Gong, Small 10, 2783 (2014)

    Article  Google Scholar 

  14. F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, Appl. Surf. Sci. 295, 164 (2014)

    Article  Google Scholar 

  15. J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15, 16883 (2013)

    Article  Google Scholar 

  16. Q.Z. Yu, M. Wang, H.Z. Chen, Z.W. Dai, Mater. Chem. Phys. 129, 666 (2011)

    Article  Google Scholar 

  17. H. Zhang, Y. Zhu, J. Phys. Chem. C 114, 5822 (2010)

    Article  Google Scholar 

  18. T. Zhou, S. Tan, Y. Guo, L. Ma, M. Gan, H. Wang, X. Sun, H. Wang, J. Alloy. Compd. 652, 358 (2015)

    Article  Google Scholar 

  19. M. Shang, W. Wang, S. Sun, J. Ren, L. Zhou, L. Zhang, J. Phys. Chem. C 113, 20228 (2009)

    Article  Google Scholar 

  20. H. Cao, X. Zhou, Y. Zhang, L. Chen, Z. Liu, J. Power Sources 243, 715 (2013)

    Article  Google Scholar 

  21. S. Liu, Z.R. Tang, Y. Sun, J.C. Colmenares, Y.J. Xu, Chem. Soc. Rev. 44, 5053 (2015)

    Article  Google Scholar 

  22. L. Zhang, Y. Long, Z. Chen, M. Wan, Adv. Funct. Mater. 14, 693 (2004)

    Article  Google Scholar 

  23. Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6, 1601273 (2016)

    Article  Google Scholar 

  24. G. Dong, L. Zhang, J. Mater. Chem. 22, 1160 (2012)

    Article  Google Scholar 

  25. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 1518 (2012)

    Article  Google Scholar 

  26. Y. Yang, M. Wan, J. Mater. Chem. 12, 897 (2002)

    Article  Google Scholar 

  27. K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, T. Li, J. Hazard. Mater. 314, 67 (2016)

    Article  Google Scholar 

  28. L. Ge, C. Han, J. Liu, J. Mater. Chem. 22, 11843 (2012)

    Article  Google Scholar 

  29. S. Zhang, L. Zhao, M. Zeng, J. Li, J. Xu, X. Wang, Catal. Today 224, 114 (2014)

    Article  Google Scholar 

  30. K. Li, X. Xie, W.D. Zhang, Carbon 110, 356 (2016)

    Article  Google Scholar 

  31. W. Jiang, W. Luo, R. Zong, W. Yao, Z. Li, Y. Zhu, Small 12, 4370 (2016)

    Article  Google Scholar 

  32. D. Zheng, G. Zhang, X. Wang, Appl. Catal. B 179, 479 (2015)

    Article  Google Scholar 

  33. J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces 5, 10317 (2013)

    Article  Google Scholar 

  34. Y. Zou, J.W. Shi, D. Ma, Z. Fan, L. Lu, C. Niu, Chem. Eng. J. 322, 435 (2017)

    Article  Google Scholar 

  35. Y. Xu, H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang, G. Cai, Dalton Trans. 42, 7604 (2013)

    Article  Google Scholar 

  36. Y. Zhu, Y. Wang, Q. Ling, Y. Zhu, Appl. Catal. B 200, 222 (2017)

    Article  Google Scholar 

  37. T. Guo, L. Wang, D.G. Evans, W. Yang, J. Phys. Chem. C 114, 4765 (2010)

    Article  Google Scholar 

  38. L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B 142, 1 (2013)

    Google Scholar 

  39. S. Meng, X. Ning, T. Zhang, S.F. Chen, X. Fu, Phys. Chem. Chem. Phys. 17, 11577 (2015)

    Article  Google Scholar 

  40. C.Y. Wang, X. Zhang, H.B. Qiu, G.X. Huang, H.Q. Yu, Appl. Catal. B 205, 615 (2017)

    Article  Google Scholar 

  41. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale 6, 4830 (2014)

    Article  Google Scholar 

  42. X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Chemistry 17, 7777 (2011)

    Article  Google Scholar 

  43. S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, J. Mater. Chem. A 3, 10119 (2015)

    Article  Google Scholar 

  44. H. Zhang, L.H. Guo, L. Zhao, B. Wan, Y. Yang, J. Phys. Chem. Lett. 6, 958 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51501068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Fu, S., Ma, L. et al. Conjugated system in metal-free 1D polyaniline nanotubes/carbon nitride hollow composites with strong adsorption and enhanced visible-light photocatalytic activities. J Mater Sci: Mater Electron 29, 4266–4275 (2018). https://doi.org/10.1007/s10854-017-8373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8373-5

Navigation