Skip to main content
Log in

Anticonvulsant Activity of 3-imidazolylflavanones and Their Flexible Analogs: 1-[(2-benzyloxy)phenyl]-2-(azol-1-yl)ethanones as New Lead Compounds

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In the search for new anticonvulsants, the (arylalkyl)azole framework has been considered as a valuable scaffold. Accordingly, a series of trans-3-imidazolylflavanones (1 – 15) and their flexible analogs 1-[(2-benzyloxy)phenyl]-2-(azol-1-yl)ethanones (16 – 19) containing an (arylalkyl)azole substructure were evaluated for their anticonvulsant activities by using pentylenetetrazole (PTZ) and maximal electroshock (MES)induced seizure tests. Also, the effect of substituent on the pendant phenyl ring and the impact of structural flexibility were investigated. The obtained results revealed that 2-(azol-1-yl)ethanone derivatives 16 – 18 exhibited 50 – 100% protection against MES-induced seizures at a dose of 100 mg/kg. Particularly, compound 16 was found to be significantly active at doses of 10 and 30 mg/kg (25 and 75% protection, respectively). This compound showed full protection at a dose of 100 mg/kg. The structure – activity relationship study revealed that the dichloro substituent in the secondary phenyl ring can improve the anticonvulsant activity. Furthermore, disconnection of the C2 – C3 bond of flavanone in trans-3-imidazolylflavanones results in flexible analogs 1-[(2-benzyloxy)phenyl]-2-(azol-1-yl)ethanones with improved anticonvulsant activity. Docking study of representative compound 16 with possible targets involved in convulsions demonstrated that the GABAA receptors can be considered as the main target for anticonvulsant activity of compound 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. O. T. Jones, Eur. J. Pharmacol., 447, 211 – 225 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. S. Dalkara and A. Karakurt, Curr. Top. Med. Chem., 12, 1033 – 1071 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. T. R. Brown and G. L. Holmes, New Engl. J. Med., 344, 1145 – 1151 (2001).

    Article  Google Scholar 

  4. E. Perucca, Ther. Drug Monit., 24, 74 – 80 (2002).

    Article  PubMed  Google Scholar 

  5. J. S. Duncan, Br. J. Clin. Pharmacol., 53, 123 – 131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. O. McNamara, The Goodman and Gilman’s Pharmacological Basis of Therapeutics, 10th ed., J. G. Hardman and L. E. Limbird (Eds.), McGraw-Hill (2001), pp. 521 – 547.

  7. R. J. Porter and B. S. Meldrum, Basic Clinical Pharmacology, 8th ed., B. G. Katzung (Ed.), McGraw Hill, 2001, pp. 395 – 418.

  8. S. I. Johannessen and C. J. Landmark, Curr. Neuropharmacol., 8, 254 – 267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. M. Goldenberg, Pharm. Therapeutics, 35, 392 – 415 (2010).

    Google Scholar 

  10. B. Malawska, Curr. Top. Med. Chem., 5, 69 – 85 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. K. A. Walker, M. B. Wallach, and D. R. Hirschfeld, J. Med. Chem., 24, 67 – 74 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. D. Nardi, A. Tajana, and A. Leonardi, et al., J. Med. Chem., 24, 727 – 731 (1981).

  13. A. Ayati, S. Emami, and A. Foroumadi, Eur. J. Med. Chem., 109, 380 – 392 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. S. Emami, A. Kebriaeezadeh, M. J. Zamani, and A. Shafiee, Bioorg. Med. Chem. Lett., 16, 1803 – 1806 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. A. Kebriaeezadeh, S. Emami M. Ebrahimi, et al., Biomed. Pharmacother., 62, 208 – 211 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. S. Emami, M. Behdad and A. Foroumadi, et al., Chem. Biol. Drug Des., 73, 388 – 395 (2009).

  17. S. Emami, M. Kazemi-Najafabadi and S. Pashangzadeh, et al., Chem. Biol. Drug Des., 78, 979 – 987 (2011).

  18. A. K. Chaturvedi, J. P. Barthwal, S. S. Parmar and V. I. Stenberg, J. Pharm. Sci., 64, 454 – 456 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. R. L. Krall, J. K. Penry, B. G. White, et al., Epilepsia, 19, 409 – 428 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. L. Richter, Nat. Chem. Biol., 8, 455 – 464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. M. Lipkind and H. A. Fozzard, Mol. Pharmacol., 78, 631 – 638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Irannejad, H. Nadri, N. Naderi, et al., Med. Chem. Res., 24, 2505 – 2513 (2015).

    Article  CAS  Google Scholar 

  23. W. Löscher, Epilepsy Res., 50, 105 – 123 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Research Council of Mazandaran University of Medical Sciences, Sari, Iran. A part of this work was related to the Pharm. D. Thesis of Samira Hafezi (Faculty of Pharmacy, Mazandaran University of Medical Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Emami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangar, N., Hafezi, S., Irannejad, H. et al. Anticonvulsant Activity of 3-imidazolylflavanones and Their Flexible Analogs: 1-[(2-benzyloxy)phenyl]-2-(azol-1-yl)ethanones as New Lead Compounds. Pharm Chem J 51, 787–792 (2017). https://doi.org/10.1007/s11094-017-1694-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1694-0

Keywords

Navigation