Skip to main content

Advertisement

Log in

Effects of Cilostazol on the Pharmacokinetics of Nifedipine After Oral and Intravenous Administration in Rats

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The purpose of this study was to investigate the effects of cilostazol on the bioavailability and pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. The pharmacokinetic parameters of nifedipine and dehydronifedipine were determined following oral and intravenous administration of nifedipine (1.5 and 6.0 mg ・ kg-1) in rats. Cilostazol inhibited CYP3A4 enzyme activity at a 50% inhibitory concentration (IC50) of 4.1 μM. The areas under the plasma concentration–time curve (AUC 0-∞) and the peak concentration (C max) of nifedipine were significantly increased, respectively, in the presence of cilostazol compared to that in the control. The total body clearance (CL/F) was significantly decreased by cilostazol. Consequently, the absolute bioavailability (AB) of nifedipine with cilostazol was significantly higher than that in the control. The metabolite to parent AUC ratio (MR) in the presence of cilostazol was significantly decreased compared to that in the control. The AUC 0-∞ of intravenous nifedipine was significantly increased with cilostazol compared to that in the control. The increased bioavailability of nifedipine in rats can be mainly due to the inhibition of CYP3A4-mediated metabolism in the small intestine and/or liver by cilostazol. In addition, the reduction of CL/F of nifedipine by cilostazol may also be a factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. E. M. Sorkin, S. P. Clissold, and R. N. Brogden, Drugs, 30, 182 – 274 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. J. L. Blackshear, C. Orlandi, N. K. Hollenberg, et al., J. Cardiovasc. Pharmacol., 8, 37 – 43 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. S. R. Hamann, M. T. Piascik, and R. G. McAllister, Biopharm. Drug Dispos., 7, 1 – 10 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. T. Funaki, P. A. Soons, F. P. Guengerich, et al., Biochem. Pharmacol., 38, 4213 – 4216 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. P. B. Watkins, Pharmacogenetics, 4, 171 – 184 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. F. He, H. C. Bi, Z. Y. Xie, et al., Rapid Commun. Mass Spectrom., 21, 635 – 643 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. T. Shimada, H. Yamazaki, M. Mimura, et al., J. Pharmacol. Exp. Ther., 270, 414 – 423 (1994).

    CAS  PubMed  Google Scholar 

  8. S. Rendic and F. J. Di Carlo, Drug Metab. Rev., 29, 413 – 580 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. J. H. Lin, M. Chiba, and T. A. Baillie, Pharmacol. Rev., 51, 135 – 158 (1999).

    CAS  PubMed  Google Scholar 

  10. G. K. Dresser, J. D. Spence, and D. G. Bailey, Clin. Pharmacokinet., 38, 41 – 57 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. M. M. Doherty and W. N. Charman, Clin. Pharmacokinet., 41, 235 – 253 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. K. Schror, Diabetes Obes. Metab., 4, S14 – S19 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. M. P. Reilly and E. R. Mohler, Ann. Pharmacother., 35, 48 – 56 (2001).

  14. K. P. Kim, B. H. Kim, K. S. Lim, et al., Clin. Ther., 31, 2098 – 2106 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. R. Abbas, C. P. Chow, N. J. Browder, et al., Hum. Exp. Toxicol., 19, 178 – 184 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. S. L. Bramer, W. P. Forbes, and S. Mallikaarjun, Clin. Pharmacokinet., 37 (Suppl 2), 1 – 11 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. V. J. Wacher, C. Y. Wu, and L. Z. Benet, Mol. Carcinog., 13, 129 – 134 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. D. Leveque and F. Jehl, Anticancer Res., 15, 231 – 336 (1995).

    Google Scholar 

  19. M. V. Relling, Ther. Drug Monit., 18, 350 – 356 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. M. Dorababu, A. Nishimura, and T. Prabha, Biomed. Pharmacother., 63, 697 – 702 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. J. S. Grundy, R. Kherani, and R. T. Foste, J. Chromatogr. B: Biomed. Appl ., 654, 146 – 151 (1994).

    Article  CAS  Google Scholar 

  22. C. L. Crespi, V. P. Miller, and B. W. Penman, Anal. Biochem., 248, 188 – 190 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. C. Y. Han, K. B. Cho, H. S. Choi, et al., Carcinogenesis, 29, 1837 – 1844 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. W. L. Chiou, J. Pharmacokinet. Biopharm., 6, 539 – 546 (1978).

    Article  CAS  Google Scholar 

  25. P. B. Watkins, Gastroenterol Clin. North Am., 21, 511 – 526 (1992).

    CAS  PubMed  Google Scholar 

  26. Q. Zhang, D. Dunbar, A. Ostrowska, et al., Drug Metab. Dispos., 27, 804 – 809 (1999).

    CAS  PubMed  Google Scholar 

  27. R. McKinnon and and M. McManus, Pathology, 28, 148 – 155 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. M. Tubic-Grozdanis, J. M. Hilfinger, G. L. Amidon, et al., Pharm. Res., 25, 1591 – 1600 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. C. K. Lee, J. S. Choi, and J. S. Bang, Korean J. Physiol. Pharmacol., 17, 245 – 251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. H. Yang, J. S. Choi, and D. H. Choi, Pharmacology, 88, 1 – 9 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. D. H. Choi, J. S. Choi, J. S. Choi, et al., J. Pharm. Pharmacol., 63, 129 – 135 (2011).

    Article  PubMed  Google Scholar 

  32. P. A. Kelly, H. Wang, K. L. Napoli, et al., Eur. J. Drug Metab. Pharmacokinet., 24, 321 – 328 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. J. J. Bogaards, M. Bertrand, P. Jackson, et al., Xenobiotica, 30, 1131 – 1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. F. P. Guengerich, M. V. Martin, P. H. Beaune, et al., J. Biol. Chem., 261, 5051 – 5060 (1986).

    CAS  PubMed  Google Scholar 

  35. D. F. V. Lewis, Cytochrome P450 Structure, Function, and Mechanisms, Taylor & Francis, Bristol (1996), pp._122 – 123.

  36. M. Kuroha, H. Kayaba, S. Kishimoto, et al., J. Pharm. Sci., 91, 868 – 873 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. A. Nishimura, M. Fujimura, F. Hasegawa, et al., J. Health Sci., 56, 310 – 320 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CK., Choi, JS. & Choi, DH. Effects of Cilostazol on the Pharmacokinetics of Nifedipine After Oral and Intravenous Administration in Rats. Pharm Chem J 51, 748–755 (2017). https://doi.org/10.1007/s11094-017-1686-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1686-0

Keywords

Navigation