Skip to main content

Advertisement

Log in

Tuberculostatic Activity of 2-Amino-6-Chloropurine Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Studies of the antimycobacterial activity of 2-amino-6-chloropurine and its N-acyl derivatives against laboratory (Mycobacterium tuberculosis H37Rv, M. avium, M. terrae) and clinical Mycobacterium tuberculosis strains (MDR-TB) identified compounds with high tuberculostatic activity (MIC from 0.35 – 1.5 μg/ml). The cytotoxic activities of the compounds with antimycobacterial activity against human embryo fibroblasts were studied in the MTT test, which showed that the study compounds were essentially nontoxic (IC50 > 50 μM). Further chemical modification may yield compounds with potential for creating drugs for the treatment of tuberculosis. With the aim of identifying the possible mechanism of the tuberculostatic activity, the ability of the study compounds to inhibit mycobacterial serine-threonine protein kinases (STPK) was assessed. The tuberculostatic activity of 2-amino-6-chloropurine derivatives was not linked with their inhibition of STPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Bhowruth, L. G. Dover, and G. S. Besra, Prog. Med. Chem., 45, 169 – 203 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. WHO Global Tuberculosis Report (2015). URL: http: //apps.who.int / iris / bitstream / 10665 / 191102 / 1 /9789241565059 eng.pdf.

  3. L. G. Dover and G. D. Coxon, J. Med. Chem., 54, 6157 – 6165 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. B. Rawat and D. S. Rawat, Med. Res. Rev., 33, 693 – 764 (2013).

    Article  PubMed  Google Scholar 

  5. A. Scozzafava, A. Mastrolorenzo, and C. T. Supuran, Bioorg. Med. Chem. Lett., 11, 1675 – 1678 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. M. Brzhndvang, V. Bakken, and L.-L. Gundersen, Bioorg. Med. Chem., 17, 6512 – 6516 (2009).

    Article  Google Scholar 

  7. A. K. Pathak, V. Pathak, L. E. Seitz, et al., Bioorg. Med. Chem., 21, 1685 – 1695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. K. Bakkestuen, L.-L. Gundersen, D. Petersen, et al., Org. Biomol. Chem., 3, 1025 – 1033 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. A. Vik, E. Hedner, C. Charnock, L. W. Tangen, et al., Bioorg. Med. Chem., 15, 4016 – 4037 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. C. Correia, M. A. Carvalho, and M. F. Proenza, Tetrahedron, 65, 6903 – 6911 (2009).

    Article  CAS  Google Scholar 

  11. Y. L. Hu, X. Liu, M. Lu, et al., J. Korean Chem. Soc., 54(4), 429 – 436 (2010).

    Article  CAS  Google Scholar 

  12. A. B. Bowles, F. H. Schneider, L. R. Lewis, and R. K. Robins, J. Med. Chem., 6, 471 – 480 (1963).

    Article  CAS  PubMed  Google Scholar 

  13. L.-H. Huang, H.-D. Xu, Z.-Y. Yao, et al., Bioorg. Med. Chem. Lett., 24, 973 – 975 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. L.-L. Gundersen, J. Nissen-Meyer, and B. Spilsber, J. Med. Chem., 45, 1383 – 1386 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. M. Knockaert, N. Gray, E. Damiens, et al., Chem. Biol. (Oxford, UK), 7, 411 – 422 (2000).

  16. L. Meijer and E. Raymond, Acc. Chem. Res., 36, 417 – 425 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. M. Legraverend and D. S. Grierson, Bioorg. Med. Chem., 14, 3987 – 4006 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. M. Yu. Steklov, V. I. Tararov, G. A. Romanov, and S. N. Mikhailov, Nucleosides, Nucleotides Nucleic Acids, 30, 503 – 511 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. A. Yu. Vigorov, V. P. Krasnov, D. A. Gruzdev, et al., Mendeleev Commun., 24, 35 – 36 (2014).

    Article  CAS  Google Scholar 

  20. S. Fletcher, V. M. Shahani, A. J. Lough, and P. T. Gunning, Tetrahedron, 66, 4621 – 4632 (2010).

    Article  CAS  Google Scholar 

  21. S. Kudon and T. Kudon, “Study on the isolation culture technique of tubercle bacilli applicable in remote areas, part 1”, Kekkaku (Tuberculosis), 48(10), 453 – 462 (1973).

    Google Scholar 

  22. T. Mosmann, J. Immunol. Methods, 65, 55 – 63 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. O. B. Bekker, D. N. Sokolov, O. A. Luzina, et al., Med. Chem. Res., 24, 2926 – 2938 (2015).

    Article  CAS  Google Scholar 

  24. S. M. Elizarov, O. V. Sergienko, I. A. Sizova, V. N. Danilenko, Molek. Biol., 39(2), 1 – 9 (2005).

    Google Scholar 

  25. G. G. Mordovskoi, USSR patent No. 278039 (1970); Byul. Izobret., No. 25 (1970).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krasnov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 51, No. 9, pp. 20 – 23, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, V.P., Vigorov, A.Y., Gruzdev, D.A. et al. Tuberculostatic Activity of 2-Amino-6-Chloropurine Derivatives. Pharm Chem J 51, 769–772 (2017). https://doi.org/10.1007/s11094-017-1690-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1690-4

Keywords

Navigation