Skip to main content
Log in

Approximation of entropy solutions to degenerate nonlinear parabolic equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space \(L^\infty \), whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and \(L^1\)-stability. We prove that the sequence of approximate solutions is strongly \(L^1\)-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Danilov, V.G.: Construction of global in time solutions to Kolmogorov–Feller pseudodifferential equations with a small parameter using characteristics. Math. Nach. 285(4), 426–439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Shelkovich, V.M.: On delta shock problem. In: Rozanova, O. (ed.) Analytical Approaches to Multidimensional Balance Laws, pp. 45–88. Nova Science Publishers, New York (2005)

    Google Scholar 

  3. Andreianov, B., Maliki, M.: A note on uniqueness of entropy solutions to degenerate parabolic equations in \({\mathbb{R}}^N\). NoDEA: Nonlinear Differ. Equ. Appl. 17(1), 109–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Theory and Applications of Transport in Porous Media, vol. 23. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  5. Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory. Applied Mathematical Sciences, vol. 83. Springer, New York (2013)

    MATH  Google Scholar 

  6. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombeau, M.: Weak asymptotic methods for 3-D self-gravitating pressureless fluids; application to the creation and evolution of solar systems from the fully nonlinear Euler–Poisson equations. J. Math. Phys. 56, 061506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombeau, M.: Approximate solutions to the initial value problem for some compressible flows. Zeitschrift fur Angewandte Mathematik und Physik 66(5), 2575–2599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombeau, M.: Asymptotic study of the initial value problem to a standard one pressure model of multifluid flows in nondivergence form. J. Differ. Equ. 260(1), 197–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotic method and interaction of nonlinear waves. AMS Trans. 208, 33–164 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Danilov, V.G., Mitrovic, D.: Delta shock wave formation in the case of triangular hyperbolic system of conservation laws. J. Differ. Equ. 245, 3704–3734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danilov, V.G., Shelkovich, V.M.: Dynamics of propagation and interaction of \( \delta \) shock waves in conservation law systems. J. Differ. Equ. 211, 333–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danilov, V.G., Shelkovich, V.M.: Delta-shock wave type solution of hyperbolic systems of conservation laws. Q. Appl. Math. 63, 401–427 (2005)

    Article  MathSciNet  Google Scholar 

  14. Gerritsen, M., Durlofsky, L.J.: Modeling of fluid flow in oil reservoirs. Ann. Rev. Fluid Mech. 37, 211–238 (2005)

    Article  MATH  Google Scholar 

  15. Godunov, A.N.: Peano’s theorem in Banach spaces. Funktsional. Anal. i Prilozhen. 9(1), 59–60 (1975). (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  16. Joseph, K.T., Sahoo, M.R.: Boundary Riemann problems for the one dimensional adhesion model. Can. Appl. Math. Q. 19, 19–41 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Joseph, K.T., Choudury, A.P., Sahoo, M.R.: Spherical symmetric solutions of multidimensional zero pressure gas dynamics system. J. Hyperbolic Differ. Equ. 11(2), 269–294 (2014)

    Article  MathSciNet  Google Scholar 

  18. Joseph, K.T., Sahoo, M.R.: Vanishing viscosity approach to a system of conservation laws admitting delta waves. Commun. Pure Appl. Anal. 12(6), 2091–2118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karlsen, K.H., Lie, K.A.: An unconditionally stable splitting scheme for a class of nonlinear parabolic equations. IMA J. Numer. Anal. 19(4), 609–635 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Mat. Sb. 81, 228–255 (1970). [(Russian). English Translation in Math USSR Sb. 10, 217–243 (1970)]

    MathSciNet  MATH  Google Scholar 

  21. Kruzhkov, S.N., Panov, E.Yu.: First-order conservative quasilinear laws with an infinite domain of dependence on the initial data. Dokl. Akad. Nauk SSSR 314, 79–84 (1990). [(Russian). English Translation in Soviet Math. Dokl. 42, 316–321 (1991)]

  22. Kruzhkov, S.N., Panov, EYu.: Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order. Ann. Univ. Ferrara Sez. VII (N.S.) 40, 31–54 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Kmit, I., Kunzinger, M., Steinbauer, R.: Generalized solutions of the Vlasov–Poisson system with singular data. J. Math. Anal. Appl. 340(1), 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: Global weak solution of the relativistic Vlasov–Klein Gordon system. Commun. Math. Phys. 238(1–2), 367–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maliki, M., Touré, H.: Uniqueness of entropy solutions for nonlinear degenerate parabolic problem. J. Evol. Equ. 3(4), 603–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Panov, EYu., Shelkovich, V.M.: \(\delta \)’-shock waves as a new type of solutions to systems of conservation laws. J. Differ. Equ. 228, 49–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Panov, EYu.: On the decay property for periodic renormalized solutions to scalar conservation laws. J. Differ. Equ. 260(3), 2704–2728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sahoo, M.R.: Generalized solutions to a system of conservation laws which is not strictly hyperbolic. J. Math. Anal. Appl. 432(1), 214–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sahoo, M.R.: Weak asymptotic solutions for a nonstrictly hyperbolic system of conservation laws. Electron. J. Differ. Equ. 2016(94), 1–14 (2016)

    Google Scholar 

  30. Shelkovich, V.M.: \(\delta \)- and \(\delta ^{\prime }\)-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes. Russ. Math. Surv. 63(3), 405–601 (2008)

    Article  MathSciNet  Google Scholar 

  31. Shelkovich, V.M.: The Riemann problem admitting \(\delta \)-, \(\delta ^{\prime }\)-shocks and vacuum states; the vanishing viscosity approach. J. Differ. Equ. 231, 459–500 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tory, E.M., Karlsen, K.H., Bürger, R., Berres, S.: Strongly degenerate parabolic–hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64(1), 41–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vazquez, J .L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Clarendon Press, Oxford (2006)

    Book  Google Scholar 

  34. Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, vol. 42. Wiley, Hoboken (2011). (reprint)

    MATH  Google Scholar 

  35. Zeidler, E.: Nonlinear Functional analysis and Its Applications. II/A: Linear Monotone Operators, vol. 467. Springer, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Colombeau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, E., Colombeau, M. & Panov, E.Y. Approximation of entropy solutions to degenerate nonlinear parabolic equations. Z. Angew. Math. Phys. 68, 133 (2017). https://doi.org/10.1007/s00033-017-0877-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0877-6

Keywords

Mathematics Subject Classification

Navigation