Skip to main content
Log in

Existence and concentration result for a quasilinear Schrödinger equation with critical growth

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the concentration of positive ground states solutions for a modified Schrödinger equation

$$\begin{aligned} -\varepsilon ^{2}\triangle u+V(x)u-\varepsilon ^{2}\triangle (u^{2})u=K(x)|u|^{p-2}u+|u|^{22^{*}-2}u,\quad \text{ in } \; \mathbb {R}^{N}, \end{aligned}$$

where \(4<p<22^{*}, \varepsilon >0\) is a parameter and \(2^{*}:=\frac{2N}{N-2}(N\ge 3)\) is the critical Sobolev exponent. We prove the existence of a positive ground state solution \(v_{\varepsilon }\) and \(\varepsilon \) sufficiently small under some suitable conditions on the nonnegative functions V(x) and K(x). Moreover, \(v_{\varepsilon }\) concentrates around a global minimum point of V as \(\varepsilon \rightarrow 0\). The proof of the main result is based on minimax theorems and concentration compact theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  2. Laedke, E.W., Spatschek, K.H., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  4. Borovskii, A.V., Galkin, A.L.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1993)

    Google Scholar 

  5. Brandi, H.S., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993)

    Article  Google Scholar 

  6. de Bouard, A., Hayashi, N., Saut, J.-C.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    Article  MATH  Google Scholar 

  7. Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)

    Google Scholar 

  8. Nakamura, A.: Damping and modification of exciton solitary waves. J. Phys. Soc. Jpn. 42, 1824–1835 (1977)

    Article  Google Scholar 

  9. Bass, F.G., Nasanov, N.N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  10. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  11. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  12. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994)

    Article  Google Scholar 

  13. Lange, H., Toomire, B., Zweifel, P.F.: Time-dependent dissipation in nonlinear Schrodinger systems. J. Math. Phys. 36, 1274–1283 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alves, C.O., Figueiredo, G.M.: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(\mathbb{R}^{N}\). J. Differ. Equ. 246, 1288–1311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^{N}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, X.M., Zou, W.M.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. Partial Differ. Equ. 55, 91 (2016). doi:10.1007/s00526-016-1045-0

    Article  MATH  Google Scholar 

  17. He, X.M.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62, 869–889 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, J., Chen, H., Nieto, J.J.: On ground state solutions for some non-autonomous Schrödinger–Poisson system. J. Differ. Equ. 252, 3365–3380 (2012)

    Article  MATH  Google Scholar 

  19. Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  20. Wang, W.B., Yang, X.Y., Zhao, F.K.: Existence and concentration of ground state solutions to a quasilinear problem with competing potentials. Nonlinear Anal. 102, 120–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, W.B., Yang, X.Y., Zhao, F.K.: Existence and concentration of ground state solutions for a subcubic quasilinear problem via Pohozaev manifold. J. Math. Anal. Appl. 424, 1471–1490 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations, II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  23. Gloss, E.: Existence and concentration of positive solutions for a quasilinear equation in \({\mathbb{R}}^{N}\). J. Math. Anal. Appl. 371, 465–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X.Y., Wang, W.B., Zhao, F.K.: Infinitely many radial and non-radial solutions to a quasilinear Schrödinger equation. Nonlinear Anal. 114, 158–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions, P.L.: The concentration compactness principle in the calculus of variations: the locally compact case. Parts 1, 2. Ann. Inst. Henri Poincare Non Linear Anal. 1, 109–145 (1984)

    Article  MATH  Google Scholar 

  26. Lions, P.L.: The concentration compactness principle in the calculus of variations: the locally compact case. Parts 1, 2. Ann. Inst. Henri Poincare Non Linear Anal. 2, 223–283 (1984)

    Article  MATH  Google Scholar 

  27. Struwe, M.: Variational Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  28. Wu, X., Wu, K.: Existence of ground state solutions for a quasilnear Schrödinger equation with critical growth. Commun. Math. Appl. 69, 81–88 (2015)

    Article  MATH  Google Scholar 

  29. Benedetto, E.D.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equation. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  30. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. XX, 721–747 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  33. Alves, C.O., do Ó, J.M., Souto, M.A.S.: Local mountain-pass for a class of elliptic problem in \({\mathbb{R}}^{N}\) involving critical growth. Nonlinear Anal. 46, 495–510 (2001)

  34. do Ó, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 38(3–4), 275–315 (2010). doi:10.1007/s00526-009-0286-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Chen.

Additional information

This work is partially supported by Natural Science Foundation of China 11671403. By the Fundamental Research Funds for the Central Universities of Central South University 2017zzts056 and by the Mathematics and Interdisciplinary Sciences project of CSU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Chen, H. Existence and concentration result for a quasilinear Schrödinger equation with critical growth. Z. Angew. Math. Phys. 68, 126 (2017). https://doi.org/10.1007/s00033-017-0869-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0869-6

Mathematics Subject Classification

Keywords

Navigation