Skip to main content
Log in

Solutions for Space–Time Fractional (2 + 1)-Dimensional Dispersive Long Wave Equations

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper aims to apply conformable fractional derivative for converting space–time fractional (2 + 1)-dimensional dispersive long wave equations into ordinary differential equations that can be solved to obtain the solitary wave solutions by the \((G^{\prime}/G)\)-expansion method. A parametric study of some physical parameters involved in such problems is performed to illustrate the influence of these parameters on the velocity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdeljawad T (2015) On conformable fractional calculus. J Comput Appl Math 279:57–66

    Article  MathSciNet  MATH  Google Scholar 

  • Abu Hammad M, Khalil R (2014) Conformable fractional heat differential equation. Int J Pure Appl Math 94:215–221

    Article  MATH  Google Scholar 

  • Bekir A, Guner O, Bhrawy AH, Biswas A (2015) Solving nonlinear fractional differential equations using exp-function and (G′/G)-expansion methods. Rom J Phys 60:360–378

    Google Scholar 

  • Bhrawy AH, Ezz-Eldien SS (2015) A new Legendre operational technique for delay fractional optimal control problems. Calcolo. doi:10.1007/s10092-015-0160-1

    MATH  Google Scholar 

  • Bhrawy AH, Doha EH, Ezz-Eldien SS, Gorder RAV (2014) A new Jacobi spectral collocation method for solving 1 + 1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur Phys J Plus 129(12):1–21

    Article  Google Scholar 

  • Bhrawy AH, Doha EH, Baleanu D, Ezz-Eldien SS, Abdelkawy MA (2015) An accurate numerical technique for solving fractional optimal control problems. Proc Romanian Acad A 16:47–54

    MathSciNet  MATH  Google Scholar 

  • Biswas A, Kara AH (2011) Conservation laws for regularized long wave equation and R (m, n) equation. Adv Sci Lett 4:168–170

    Article  Google Scholar 

  • Chen Y, Li B (2004) Symbolic computation and construction of soliton-like solutions to the (2 + 1)-dimensional dispersive long-wave equations. Int J Eng Sci 42:715–724

    Article  MathSciNet  MATH  Google Scholar 

  • Dai CQ, Wang YY, Biswas A (2014) Dynamics of dispersive long waves in fluids. Ocean Eng 81:77–88

    Article  Google Scholar 

  • Darzi R, Mohammadzade B, Mousavi S, Beheshti R (2013) Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J Math Comput Sci 6:79–84

    Google Scholar 

  • Ding XL, Jiang YL (2016) A windowing waveform relaxation method for time-fractional differential equations. Commun Nonlinear Sci Numer Simul 30:139–150

    Article  MathSciNet  Google Scholar 

  • Doha EH, Bhrawy AH, Ezz-Eldien SS (2015) An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations. J Comput Nonlinear Dyn 10:021019

    Article  Google Scholar 

  • Eslami M (2016) Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl Math Comput 285:141–148

    MathSciNet  Google Scholar 

  • Eslami M, Rezazadeh H (2016) The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3):475–485

    Article  MathSciNet  MATH  Google Scholar 

  • Eslami M, Neyrame A, Ebrahimi M (2012) Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation. J King Saud Univ (Sci) 24:69–71

    Article  Google Scholar 

  • Ezz-Eldien SS, Doha EH, Baleanu D, Bhrawy AH (2015) A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J Vib Control. doi:10.1177/1077546315573916

    MATH  Google Scholar 

  • Grigorenko I, Grigorenko E (2003) Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett 91:034101

    Article  Google Scholar 

  • He J (1998a) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167:57–68

    Article  MathSciNet  MATH  Google Scholar 

  • He J (1998) Nonlinear oscillation with fractional derivative and its applications. In: International conference on vibrating engineering, Dalian, China, pp 288–291

  • He J (1999) Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15:86–90

    MathSciNet  Google Scholar 

  • Khalil R, Al Horani M, Yousef A, Sababheh M (2014) A new definition of fractional derivative. J Comput Appl Math 264:65–70

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San Diego

    MATH  Google Scholar 

  • Kong CC, Wang D, Song LN, Zhang HQ (2009) New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method. Chaos Solitons Fractals 39:697–706

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics, fractals and fractional calculus in continuum mechanics. Springer, New York, pp 291–348

    Book  MATH  Google Scholar 

  • Peng Y, Krishnan EV (2005) The singular manifold method and exact periodic wave solutions to a restricted BLP dispersive long wave system. Rep Math Phys 56:367–378

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5:367–386

    MathSciNet  MATH  Google Scholar 

  • Shu XB, Shi Y (2016) A study on the mild solution of impulsive fractional evolution equations. Appl Math Comput 273:465–476

    MathSciNet  Google Scholar 

  • Song L, Wang W (2013) A new improved Adomian decomposition method and its application to fractional differential equations. Appl Math Model 37:1590–1598

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Du N (2014) Fast alternating-direction finite difference methods for threedimensional space-fractional diffusion equations. J Comput Phys 258:305–318

    Article  MathSciNet  MATH  Google Scholar 

  • Wang ML, Li XZ, Zhang JL (2008a) The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A 372:417–423

    Article  MathSciNet  MATH  Google Scholar 

  • Wang ML, Zhang JL, Li XZ (2008b) Application of the (G′/G)-expansion to travelling wave solutions of the Broer–Kaup and the approximate long water wave equations. Appl Math Comput 206:321–326

    MathSciNet  MATH  Google Scholar 

  • Yan ZY (2003) Generalized transformations and abundant new families of exact solutions for (2 + 1)-dimensional dispersive long wave equations. Comput Math Appl 46:1363–1372

    Article  MathSciNet  MATH  Google Scholar 

  • Younis M, Rizvi S, Raza T, Zhou Q, Biswas A, Belic M (2015) Optical solitons in dual-core fibers with G′/G-expansion scheme. J Optoelectron Adv M 17:505–510

    Google Scholar 

  • Zhang JF, Han P (2001) New multisoliton solutions of the (2 + 1)-dimensional dispersive long wave equations. Commun Nonlinear Sci Numer Simul 6:178–182

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang HQ (2011) Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys Lett A 375:1069–1073

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Ahmad B, Wang G (2015) Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions. Appl Math Comput 268:388–392

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, M. Solutions for Space–Time Fractional (2 + 1)-Dimensional Dispersive Long Wave Equations. Iran J Sci Technol Trans Sci 41, 1027–1032 (2017). https://doi.org/10.1007/s40995-017-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0320-z

Keywords

Navigation