Skip to main content
Log in

Graphene plasmonic nanogratings for biomolecular sensing in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We design a surface plasmon resonance (SPR) molecular sensor based on graphene and biomolecule adsorption at graphene–liquid interfaces. The sensor configuration consists of two opposing arrays of graphene nanograting mounted on a substrate, with a liquid-phase sensing medium confined between them. We characterize the design in simulation on a variety of substrates by altering the refractive index of the sensing medium and varying the absorbance–transmittance characteristics. The influence of various parameters on the biosensor’s performance, including the Fermi level of graphene, the dielectric constant of the substrate, and the incident angle for plasmon excitation, is investigated. Numerical simulations demonstrate the sensitivity higher than 3000 nm/RIU (refractive index unit). The device supports a wide range of substrates in which graphene can be epitaxially grown. The proposed biosensor works independent of the incident angle and can be tuned to cover a broadband wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J. García de Abajo, V. Pruneri et al., Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165–168 (2015)

    Article  ADS  Google Scholar 

  2. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu et al., Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016)

    Article  ADS  Google Scholar 

  3. H.T. Chorsi, S.D. Gedney, Efficient high-order analysis of bowtie nanoantennas using the locally corrected Nystrom method. Opt. Express 23(24), 31452–31459 (2015)

    Article  ADS  Google Scholar 

  4. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  5. P. Adam, J. Dostálek, J. Homola, Multiple surface plasmon spectroscopy for study of biomolecular systems. Sens. Actuators B 113(2), 774–781 (2006)

    Article  Google Scholar 

  6. C.-J. Huang, J. Dostalek, A. Sessitsch, W. Knoll, Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal. Chem. 83(3), 674–677 (2011)

    Article  Google Scholar 

  7. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photon 6(11), 749–758 (2012)

    Article  ADS  Google Scholar 

  8. H.T. Chorsi, M.T. Chorsi, X.J. Zhang, Using graphene plasmonics to boost biosensor sensitivity. SPIE Biomed. Opt. Med. Imag. (2016). https//doi.org/10.1117/2.1201610.006712

    Article  Google Scholar 

  9. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Article  ADS  Google Scholar 

  10. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19(2), 026222 (2007)

    Article  ADS  Google Scholar 

  11. T. Holmgaard, S.I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75(24), 245405 (2007)

    Article  ADS  Google Scholar 

  12. J. Hu, X. Sun, A. Agarwal, L.C. Kimerling, Design guidelines for optical resonator biochemical sensors. J. Opt. Soc. Am. B 26(5), 1032–1041 (2009)

    Article  ADS  Google Scholar 

  13. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sens. Actuators B 54(1), 3–15 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. John X.J. Zhang from Dartmouth College and Prof. Stephen D. Gedney from the University of Colorado Denver for the fruitful discussion and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam T. Chorsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chorsi, M.T., Chorsi, H.T. Graphene plasmonic nanogratings for biomolecular sensing in liquid. Appl. Phys. A 123, 757 (2017). https://doi.org/10.1007/s00339-017-1380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1380-9

Navigation