Skip to main content
Log in

Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V2O5 phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V2O5 phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Luo, Z. Wu, X. Xu, M. Du, T. Wang, Y.Jian, Impact of substrate temperature on the microstructure, electrical and optical properties of sputtered nanoparticle V2O5 thin films, Vacuum 85 (2010) 145–150

    Article  ADS  Google Scholar 

  2. D.O. Scanlon, A. Walsh, B.J. Morgan, G.W. Watson, An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008)

    Article  Google Scholar 

  3. P. Chatterjee, S.P. Sen Gupta, S. Suchitra, Particle fracture and plastic deformation in vanadium pentoxide powders induced by high energy vibrational ball-mill, Bull. .Mater. Sci 24, 173–180 (2001)

    Article  Google Scholar 

  4. S. Beke, A review of the growth of V2O5 films from 1885 to 2010, Thin Solid. Films 519 (2011) 1761–1771

    Article  ADS  Google Scholar 

  5. A. Bouzidi, N. Benramdane, A. Nakrela, C. Mathieu, B. Khelifa, R. Desfeux, A. Da Costa, First synthesis of vanadium oxide thin films by spray pyrolysis technique, Mater. Sci. Eng B 95, 141–147 (2002)

    Article  Google Scholar 

  6. G.J. Fang, Z.L. Liu, Y.Q. Wang, H.H. Liu, K. L. Yao, Orientated growth of V2O5 electrochromic thin films on transparent conductive glass by pulsed excimer laser ablation technique. J. Phys. D Appl. Phys 33, 3018 (2000)

    Article  ADS  Google Scholar 

  7. C.V. Ramana, O.M. Hussain, B.Srinvasalu Naidu, C. Julien, M. Balkanski, Physical investigations on electron-beam evaporated vanadium pentoxide films, Mater. Sci. Eng B 52, 32–40 (1998)

    Article  Google Scholar 

  8. G.S. Nadkarni, V.S. Shirodkar, Experiment and theory for switching in Al/V2O5/Al devices, Thin Solid Films 105, 115–129 (1983)

    Article  ADS  Google Scholar 

  9. C.E. Patil, N.L. Tarwal, P.S. Shinde, H.P. Deshmukh, P.S. Patil, Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties. J. Phys. D: Appl. Phys 42, 025404–025411 (2009)

    Article  ADS  Google Scholar 

  10. M. Benmoussa, A. Outzourhit, A. Bennouna, E.L. Ameziane, Electrochromism in sputtered V2O5 thin films: structural and optical studies, Thin. solid films 405, 11–16 (2002)

    Article  ADS  Google Scholar 

  11. S. Zhan, Y. Wei, X. Bie, C. Wang, F. Du, G. Chen, F. Hu, Structural and electrochemical properties of Al3+ doped V2O5 nanoparticles prepared by an oxalic acid assisted soft-chemical method,J. Alloys Compd 502, 92–96 (2010)

    Article  Google Scholar 

  12. D.M. Yu, S.T. Zhang, D.W. Liu, X.Y. Zhou, S.H. Xie, Q.F. Zhang, Y. Y. Liu ,G. Z. Cao, Effect of manganese doping on Li-ion intercalation properties of V2O5 films, J. Mater. Chem 20, 10841–10846 (2010)

    Article  Google Scholar 

  13. F. Coustier, S. Passerini, W. H. Smyrl, Dip-coated silver-doped V2O5 xerogel hosts as cathode materials for lithium intercalation. J.Solid State Ionics 100, 247–258 (1997)

    Article  Google Scholar 

  14. M. Giorgetti, M. Berrettoni, W.H. Smyrl, Doped V2O5-based cathode materials: where does the doping metal go? An X-ray absorption spectroscopy study. Chem. Mater 19, 5991–6000 (2007)

    Article  Google Scholar 

  15. J. Farcy, S. Maingot, P. Soudan, J.P. Pereira-Ramos, N. Baffier, Electrochemical properties of the mixed oxide Fe0.11V2O5.16 as a Li intercalation compound, Solid State Ionic 99 (1997) 61–69

    Article  Google Scholar 

  16. Y. Iida, Y. Kanno, Doping effect of M (M = Nb, Ce, Nd, Dy, Sm, Ag, and/or Na) on the growth of pulsed-laser deposited V2O5 thin films, J. Mater. Process.Technol 209, 2421–2427 (2009)

    Article  Google Scholar 

  17. M. Mousavi, A. Kompany, N. Shahtahmasebi, M.-M. Bagheri-Mohagheghi, Effect of S-doping on structural, optical and electrochemical properties of vanadium oxide thin films prepared by spray pyrolysis, Phys. Scr. 88 (2013) 065701–065706

    Article  ADS  Google Scholar 

  18. M. Abyazisani, M.M. Bagheri-Mohagheghi, M.R. Benam, Study of structural and optical properties of nanostructured V2O5 thin films doped with fluorine, Mater. Sci. Semicond. Process 31, 693–699 (2015)

    Article  Google Scholar 

  19. P. Kireev, la physique des semiconducteurs. Ed. Mir, Moscou (1975) (in French)

  20. E.G. Birgin, I. Chambouleyron, J. M. Martínez, Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 151, 862–880 (1999)

    Article  ADS  Google Scholar 

  21. C.V. Ramana, R. J.Smith, O.M. Hussain, C. C.Chusuei, C. M. Julien, Correlation between growth conditions, microstructure, and optical properties in pulsed-laser-deposited V2O5 thin films, Chem. Mater. 17, 1213–1219 (2005)

    Article  Google Scholar 

  22. S. A.Mahmud, A.A. Akl, H. Kamal, Electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis. Phys. B 311, 366–375 (2002)

    Article  ADS  Google Scholar 

  23. H.B. Salah, H. Bouzouita, B. Rezig, Preparation and characterization of tin sulfide. Thin Solid Films 439, 480–481 (2005)

    Google Scholar 

  24. A.V. .Murugan, M.V. Reddy, G. Campet, K. Vijayamohanan, Cyclic voltammetry, electrochemical impedance and ex situ X-ray diffraction studies of electrochemical insertion and deinsertion of lithium ion into nanostructured organic–inorganic poly(3,4-ethylenedioxythiophene) based hybrids. J. Electroanal. Chem 603, 287–296 (2007)

    Article  Google Scholar 

  25. Y.T. Kim, S. Gopukumar, K.B. Kim, B. W. Cho, Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells,J. Power Sour. 117, 110–117 (2003)

    Article  ADS  Google Scholar 

  26. K. C.Cheng, F. R.Chen, J. J.Kai, V2O5 nanowires as a functional material for electrochoromic device. Sol. Energy Mater. Sol. Cells 90, 1156–1165 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, M., Khorrami, G.H., Kompany, A. et al. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films. Appl. Phys. A 123, 755 (2017). https://doi.org/10.1007/s00339-017-1366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1366-7

Navigation