Skip to main content
Log in

Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Wang, D. Torres, F.E. Fernández, Sci. Adv. 3(4),e1602697 (2017)

    Article  ADS  Google Scholar 

  2. J. Shintake, S. Rosset, B. Schubert, Adv. Mater. 28(2), 231–238 (2016)

    Article  Google Scholar 

  3. I.A. Anderson, T. Hale, T. Gisby, Appl. Phys. A, 98(1), 75–83 (2010)

    Article  ADS  Google Scholar 

  4. B.M. O’Brien, E.P. Calius, T. Inamura, Appl. Phys. A, 100(2), 385–389 (2010)

    Article  ADS  Google Scholar 

  5. M. Zarek, M. Layani, I. Cooperstein, Adv. Mater. 28(22), 4449–4454 (2016)

    Article  Google Scholar 

  6. N. Terasawa, K. Asaka, Sens. Actuators B, 240, 536–542 (2017)

    Article  Google Scholar 

  7. S.H. Ko, H. Pan, C.P. Grigoropoulos, Appl. Phys. A 92(3), 579–587 (2008)

    Article  ADS  Google Scholar 

  8. L. Zhang, S. Chizhik, Y. Wen, Adv. Funct. Mater. 26(7), 1040–1053 (2016)

    Article  Google Scholar 

  9. I. Põldsalu, M. Harjo, T. Tamm, Sens. Actuators B 250, 44–5 (2017)

    Article  Google Scholar 

  10. C.V. Fengel, N.P. Bradshaw, S.Y. Severt, Smart Mater. Struct. 26(5), 055004 (2017)

    Article  ADS  Google Scholar 

  11. J. Li, W. Ma, L. Song, Nano Lett. 11(11), 4636–4641 (2011)

    Article  ADS  Google Scholar 

  12. N. Kamamichi, Y. Kaneda, M. Yamakita, SICE Annu. Conf. Fukui 2(1), 212–217 (2003)

  13. Y. Kaneda, N. Kamamichi, M. Yamakita, SICE Annu. Conf. IEEE, 2, 1650–1655 (2003)

    Google Scholar 

  14. S. Lee, K.J. Kim, Smart Struct. Mater. 16(3), 583–588 (2007)

  15. J.M. Rossiter, B.L. Stoimenov, T. Mukai, The 14th international symposium on: smart structures and materials, 2007, 65241B–11

  16. Y.Z. hao, B. Xu, G. Zheng, Smart Mater. Struct. 22(11), 115035 (2013)

    Article  ADS  Google Scholar 

  17. S. Tas, B. Zoetebier, O.S. Sukas, Macromol. Mater. Eng. 302(4), 1600381-1–1600381-8 (2017)

  18. T. Horiuchi, T. Mihashi, T. Fujikado, Smart Mater. Struct. 26(4), 045021 (2017)

    Article  ADS  Google Scholar 

  19. L. Naji, M. Safari, S. Moaven, Carbon, 100, 243–257 (2016)

    Article  Google Scholar 

  20. H. Liu, K. Xiong, K. Bian, Acta Mech. Sin. 33(2), 382–393 (2017)

    Article  ADS  Google Scholar 

  21. Y. Wang, Z. Zhu, J. Liu, Smart Mater. Struct. 25(8), 085012 (2016)

    Article  ADS  Google Scholar 

  22. M. Safari, L. Naji, R.T. Baker, Polymer, 76, 140–149 (2015)

    Article  Google Scholar 

  23. Z. Sun, G. Zhao, W. Song, Exp. Mech. (2017). https://doi.org/10.1007/s11340-017-0332-9

    Article  Google Scholar 

  24. Z. Sun, G. Zhao, W. Song, Cellulose 24(2), 441–445 (2017)

    Article  Google Scholar 

  25. Z. Sun, W. Song, G. Zhao, Cellulose 24(10), 4383–4392 (2017)

    Article  Google Scholar 

  26. M.P. Han, H.F. Li, J Wuhan Univ Technol (Mater Sci Edn) 1, 008 (2013)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from National Natural Science Foundation of China (31470714) and the Fundamental Research Funds for the Central Universities (2572017BB08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuangzhi Sun or Wenlong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhao, G., Qiao, D. et al. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites. Appl. Phys. A 123, 749 (2017). https://doi.org/10.1007/s00339-017-1342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1342-2

Navigation