Skip to main content
Log in

Effect of Sn doping on the structure, magnetism and thermal expansion of Mn3Ga1−xSnxN (x = 0.1, 0.3, 0.5 and 0.7) compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Sn-doped Mn3Ga1−xSnxN compounds were prepared by solid-state sintering methods. The negative thermal expansion (NTE) performance and correlated structure and magnetism were investigated. A near zero thermal expansion (ZTE) behavior for Mn3Ga0.3Sn0.7N, exhibiting a coefficient of thermal expansion (CTE) of − 0.45 × 10−6 K−1 in a temperature range from 480 to 513 K, was discovered. The ZTE mechanism is proposed based upon the temperature dependence of dM/dT with respect to various Sn contents. The present ZTE material is probably regarded as a promising candidate for fabricating precision devices used far from ambient temperature circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Chen, L. Hu, J.X. Deng, X.R. Xing, Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 44, 3522–3567 (2015)

    Article  Google Scholar 

  2. X.R. Shan, R.J. Huang, Y.M. Han, C.J. Huang, L.F. Li, Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior. J. Alloys Comp. 648, 463–466 (2015)

    Article  Google Scholar 

  3. J. Yan, Y. Sun, C. Wang, L.H. Chu, Z.X. Shi, S.H. Deng, K.W. Shi, H.Q. Lu, Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature. Scr. Mater. 84–85, 19–22 (2014)

    Article  Google Scholar 

  4. J.R. Salvador, F. Guo, T. Hogan, M.G. Kanatzidis, Zero thermal expansion in YbGaGe due to an electronic valence transition. Nature 425, 702–705 (2003)

    Article  ADS  Google Scholar 

  5. S. Margadonna, K. Prassides, A.N. Fitch, Zero Thermal expansion in a Prussian blue analogue. J. Am. Chem. Soc. 126, 15390–15391 (2004)

    Article  Google Scholar 

  6. J. Chen, X.R. Xing, C. Sun, P.H. Hu, R.B. Yu, X.W. Wang, L.H. Li, Zero thermal expansion in PbTiO3-based perovskites. J. Am. Chem. Soc. 130, 1144–1145 (2008)

    Article  Google Scholar 

  7. A.E. Phillips, G.J. Halder, K.W. Chapman, A.L. Goodwin, C.J. Kepert, Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc (II) cyanide. J. Am. Chem. Soc. 132, 10–11 (2010)

    Article  Google Scholar 

  8. L. Hu, J. Chen, L.L. Fan, Y. Ren, Y.C. Rong, Z. Pan, J.X. Deng, R.B. Yu, X.R. Xing, Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga,Fe) over a wide temperature range. J. Am. Chem. Soc. 136, 13566–13569 (2014)

    Article  Google Scholar 

  9. S. Yamada, N. Marukawa, M. Hayashi, T. Matsushita, Irifune, Room-temperature zero thermal expansion in a cubic perovskite oxide SrCu3Fe4−xMnxO12. Appl. Phys. Lett. 106, 151901 (2015)

    Article  ADS  Google Scholar 

  10. S.P. Li, R.J. Huang, Y.Q. Zhao, W. Wang, Y.M. Han, L.F. Li, Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds. Adv. Funct. Mater. 27, 1604195 (2017)

    Article  Google Scholar 

  11. W. Wang, R.J. Huang, W. Li, J. Tan, Y.Q. Zhao, S.P. Li, C.J. Huang, L.F. Li, Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds. Phys. Chem. Chem. Phys. 17, 2352–2356 (2015)

    Article  Google Scholar 

  12. X.X. Jiang, M.S. Molokeev, P.F. Gong, Y. Yang, W. Wang, S.H. Wang, S.F. Wu, Y.X. Wang, R.J. Huang, L.F. Li, Y.C. Wu, X.R. Xing, Z.S. Lin, Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13. Adv. Mater. 28, 7936–7940 (2016)

    Article  Google Scholar 

  13. S. Dan, S. Mukherjee, C. Mazumdar, R. Ranganathan, Zero thermal expansion with high curie temperature in Ho2Fe16Cr Alloy. RSC Adv. 6, 94809–94814 (2016)

    Article  Google Scholar 

  14. C.P. Romao, F.A. Perras, U.W. Zwanziger, J.A. Lussier, K.J. Miller, C.M. Calahoo, J.W. Zwanziger, M. Bieringer, B.A. Marinkovic, D.L. Bryce, M.A. White, Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chem. Mater. 27, 2633–2646 (2015)

    Article  Google Scholar 

  15. T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Reran, N. Rogado, M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Superconductivity in the non-oxide perovskite MgCNi3. Nature 411, 54–56 (2001)

    Article  ADS  Google Scholar 

  16. K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, T. Kanomata, Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 024426 (2000)

    Article  ADS  Google Scholar 

  17. T. Tohei, H. Wada, T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94, 1800–1802 (2003)

    Article  ADS  Google Scholar 

  18. E.O. Chi, W.S. Kim, N.H. Hur, Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120, 307–310 (2001)

    Article  ADS  Google Scholar 

  19. S.H. Deng, Y. Sun, L. Wang, H. Wu, K.W. Shi, P.W. Hu, Q.Z. Huang, C. Wang, Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1−xN. Appl. Phys. Lett. 108, 041908 (2016)

    Article  ADS  Google Scholar 

  20. K. Asano, K. Koyama, K. Takenaka, Magnetostriction in Mn3CuN. Appl. Phys. Lett. 92, 161909 (2008)

    Article  ADS  Google Scholar 

  21. D. Fruchart, E.F. Bertaut, Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 44, 781–791 (1978)

    Article  ADS  Google Scholar 

  22. Y. Sun, C. Wang, Y.C. Wen, K.G. Zhu, J.T. Zhao, Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN. Appl. Phys. Lett. 91, 231913 (2007)

    Article  ADS  Google Scholar 

  23. R.J. Huang, Z.X. Wu, H.H. Yang, Z. Chen, X.X. Chu, L.F. Li, Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si. Cryogenics 50, 750–753 (2010)

    Article  ADS  Google Scholar 

  24. Y. Nakamura, K. Takenaka, A. Kishimoto, H. Takagi, Mechanical properties of metallic perovskite Mn3Cu0.5Ge0.5N: high-stiffness isotropic negative thermal expansion material. J. Am. Ceram. Soc. 92, 2999–3003 (2009)

    Article  Google Scholar 

  25. K. Takaneka, H. Takagi, Zero thermal expansion in a pure-form antiperovskite manganese nitride. Appl. Phys. Lett. 94, 131904 (2009)

    Article  ADS  Google Scholar 

  26. Y.J. Dai, X.Y. Song, R.J. Huang, L.F. Li, Z.H. Sun, Effect of Si doping on structure, thermal expansion and magnetism of antiperovskite manganese nitrides Mn3Cu1–xSixN. Mater. Lett. 139, 409–413 (2015)

    Article  Google Scholar 

  27. Y.J. Dai, R.J. Huang, W. Wang, L.F. Li, Z.H. Sun, Near Zero Thermal Expansion in Ge-doped Mn3GaN Compounds. Ceram. Int. 43, 1608–1611 (2017)

    Article  Google Scholar 

  28. X.Y. Song, Z.H. Sun, Q.Z. Huang, M. Rettenmayr, X.M. Liu, M. Seyring, G.N. Li, G.H. Rao, F.X. Yin, Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 23, 4690–4694 (2011)

    Article  Google Scholar 

  29. C. Wang, L.H. Chu, Q.R. Yao, Y. Sun, M.M. Wu, L. Ding, J. Yan, Y.Y. Na, W.H. Tang, G.N. Li, Q.Z. Huang, J.W. Lynn, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn,M)xN (M = Ag, Ge). Phys. Rev. B 85, 220103 (2012)

    Article  ADS  Google Scholar 

  30. K. Takenaka, H. Takagi, Giant negative thermal expansion in Ge-doped antiperovskite manganese nitrides. Appl. Phys. Lett. 87, 261902 (2005)

    Article  ADS  Google Scholar 

  31. Z.H. Sun, X.Y. Song, Preparation and magnetic characterization of ultrafine-grained ζ-Mn2N0.86 compound bulk. Mater. Lett. 63, 2059–2062 (2009)

    Article  Google Scholar 

  32. Z.H. Sun, X.Y. Song, F.X. Yin, L.X. Sun, X.K. Yuan, X.M. Liu, Giant negative thermal expansion in ultrafine-grained Mn3(Cu1−xGex)N (x = 0.5) bulk. J. Phys. D Appl. Phys. 42, 122004 (2009)

    Article  ADS  Google Scholar 

  33. J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41, 3199–3205 (1964)

    Article  ADS  Google Scholar 

  34. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, S. Shamoto, Magnetovolume effect in Mn3Cu1−xGexN related to the magnetic structure: neutron powder diffraction measurements. Phys. Rev. B 77, 020409R (2008)

    Article  ADS  Google Scholar 

  35. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1−xGexN. Phy. Rev. Lett. 101, 205901 (2008)

    Article  ADS  Google Scholar 

  36. P. Tong, D. Louca, G. King, A. Llobet, J.C. Lin, Y.P. Sun, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3. Appl. Phys. Lett. 102, 041908 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Sciences Foundation of China (Grant nos. 51674096 and 51671076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Li, C., Zhang, X. et al. Effect of Sn doping on the structure, magnetism and thermal expansion of Mn3Ga1−xSnxN (x = 0.1, 0.3, 0.5 and 0.7) compounds. Appl. Phys. A 123, 743 (2017). https://doi.org/10.1007/s00339-017-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1378-3

Navigation