Skip to main content
Log in

A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of ~ 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfOx layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfOx layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfOx layer was changed by polarity-dependent drift of the oxygen vacancy (Vo), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.G. Park, M.K. Yang, H. Ju, D.J. Seong, J.M. Lee, E. Kim, S. Jung, L.j. Zhang, Y.C. Shin, I.G. Baek, J. Choi, H.K. Kang, C. Chung, IEDM 11, 20 (2011)

    Google Scholar 

  2. J. Woo, D. Lee, G. Choi, E. Cha, S. Kim, W. Lee, S. Park, H. Hwang, Microelectron. Eng. 03, 109 (2013)

    Google Scholar 

  3. I.G. Baek, C.J. Park, H. Ju, D.J. Seong, H.S. Ahn, J.H. Kim, M.K. Yang, S.H. Song, E.M. Kim, S.O. Park, C.H. Park, C.W. Song, G.T. Jeong, S. Choi, H.K. Kang, C. Chung, IEDM 11, 737 (2011)

    Google Scholar 

  4. H.S. Yoon, L.G. Baek, J.S. Zhao, H.J. Sim, M.Y. Park, H. Lee, G.H. Oh, J.C. Shin, I.S. Yeo, U. Chung, VLSI Technol. Digest. 09, 26 (2009)

    Google Scholar 

  5. J. Jang, H.S. Kim, W. Cho, H. Cho, J. Kim, S.I. Shim, Y. Jang, I.H. Jeong, B.K. Son, D.W. Kim, K. Kim, J.J. Shim, J.S. Lim, K.H. Kim, S.Y. Yi, J.Y. Lim, D. Chung, H.C. Moon, S. Hwang, J.W. Lee, Y.H. Son, U.I. Chung, W.S. Lee, VLSI Technol. Digest.09, 192 (2009)

    Google Scholar 

  6. Q. Luo, X.X. Xu, H.T. Liu, H.B. Lv, T.C. Gong, S.B. Long, Q. Liu, H.T. Sun, W. Banerjee, L. Li, J.F. Gao, N.D. Lu, S.S. Chung, J. Li, M. Liu, IEDM 15, 245 (2015)

    Google Scholar 

  7. S. Lee, D. Lee, J. Woo, E. Cha, J. Song, J. Park, H. Hwang, IEDM 13, 272 (2013)

    Google Scholar 

  8. H. Chen, H.Y. Chen, S. Yu, B. Gao, P. Huang, J.F. Kang, H.-S. Wong, Philip, IEDM 12, 497 (2012)

    Google Scholar 

  9. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng. Rep. 6, 831 (2014)

    Google Scholar 

  10. H.L. Ma, J. Feng, H.B. Lv, T. Gao, X.X. Xu, Q. Luo, T.C. Gong, P. Yuan, Nanoscale Res. Lett. 12, 118 (2017)

    Article  ADS  Google Scholar 

  11. J.J. Huang, Y.M. Tseng, W.C. Luo, C.W. Hsu, T.H. Hou, IEDM 11, 733 (2011)

    Google Scholar 

  12. J.H. Yoon, J.S. Song, I.H. Yoo, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, C. S. Hwang Adv. Funct. Mater. 24, 5086 (2014)

    Article  Google Scholar 

  13. J. Lim, B. Oh, W. Lee, K. Lee, H. Na, B. Kim, D. Seo, J. Han, J. Hwang, Appl. Phys. Lett. 95, 123503 (2009)

    Article  ADS  Google Scholar 

  14. V.N. Kruchinin, V. Sh. Aliev, T.V. Perevalov, D.R. Islamov, V.A. Gritsenko, I.P. Prosvirin, C.H. Cheng, A. Chin, Microelectron. Eng. 147, 165 (2015)

    Article  Google Scholar 

  15. B.C. Vincent, Wiley, Oxford 3, 56 (2000)

    Google Scholar 

  16. P. Tyapi, Thin Solid Film 519, 2355 (2011)

    Article  ADS  Google Scholar 

  17. B. Cho, S. Song, Y. Ji, T. Lee, Appl. Phys. Lett. 97, 063305 (2010)

    Article  ADS  Google Scholar 

  18. S. Asanuma, H. Akoh, Phys. Rev. B 80, 235113 (2009)

    Article  ADS  Google Scholar 

  19. B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima, H. Hody, V. Paraschiv, I.P. Radu, A. Franquet, J.C. Liu, J. Swerts, O. Richard, H. Bender, L. Altimime, M. Jurczak, IEDM 13, 257 (2013)

    Google Scholar 

  20. W. Zeng, K.H. Bowen, J. Li, I. Dabkowska, M. Gutowski, J. Phys. Chem. A 109, 11521 (2005)

    Article  Google Scholar 

  21. B.C. Lai, N.H. Kung, J.Y. Lee, J. Appl. Phys. 85, 4087 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Instrumental Analysis Center of Shanghai Jiao Tong University and Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Feng, J., Gao, T. et al. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior. Appl. Phys. A 123, 730 (2017). https://doi.org/10.1007/s00339-017-1350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1350-2

Navigation