Skip to main content
Log in

Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fabrication and photoluminescence properties of waveguide structures inside transparent silica xerogels containing PbS quantum dots (QDs) have been investigated. Stable dispersion of water-soluble PbS QDs, which emit in the wavelength region of 1.3 μm, in silica xerogels was conducted by a sol–gel method using 3-aminopropyltrimethoxysilane. It was found that both the photoluminescence intensity and the dispersion stability are highly sensitive to catalysts, reaction temperature and time, and annealing temperature. Continuous and straight waveguide structures with refractive-index change were obtained by choosing appropriate irradiation conditions. The fabricated waveguides led approximately 60% increase in the intensity of the photoluminescence generated from the PbS QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000)

    Article  ADS  Google Scholar 

  2. C. Santori, D. Fattal, J. Vuckovic, G. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  Google Scholar 

  3. E.B. Flagg, A. Muller, S.V. Polyakov, A. Ling, A. Migdall, G.S. Solomon, Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401–137404 (2010)

    Article  ADS  Google Scholar 

  4. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010)

    Article  ADS  Google Scholar 

  5. J.P. Hadden, J.P. Harrison, A.C. Stanley-Clarke, L. Marseglia, Y.-L.D. Ho, B.R. Patton, J.L. O’Brien, J.G. Rarity, Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901–241903 (2010)

    Article  ADS  Google Scholar 

  6. K.P. Nayak, P.N. Melentiev, M. Morinaga, FamLe Kien, V.I. Balykin, K. Hakuta, Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007)

    Article  ADS  Google Scholar 

  7. M. Davanco, K. Srinivasan,” Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides. Opt. Express 17, 10542–10563 (2009)

    Article  ADS  Google Scholar 

  8. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett. 11, 4362–4365 (2011)

    Article  ADS  Google Scholar 

  9. Y. Dong, J. Wen, F. Pang, Z. Chen, J. Wang, Y. Luo, G. Peng, T. Wang, Optical properties of PbS-doped silica optical fiber materials based on atomic layer deposition. Appl. Surf. Sci. 320, 372–378 (2014)

    Article  ADS  Google Scholar 

  10. X. Huang, Z. Fang, Z. Peng, Z. Ma, H. Guo, J. Qiu, G. Dong, Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Opt. Express 25, 19694–19704 (2017)

    ADS  Google Scholar 

  11. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  12. K. Miura, J.R. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329–3331 (1997)

    Article  ADS  Google Scholar 

  13. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur, Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996)

    Article  ADS  Google Scholar 

  14. J.R. Qiu, M. Shirai, T. Nakaya, J.H. Si, X.W. Jiang, C.S. Zhu, K. Hirao, Space-selective precipitation of metal nanoparticles inside glasses. Appl. Phys. Lett. 81, 3040–3042 (2002)

    Article  ADS  Google Scholar 

  15. Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405–247408 (2003)

    Article  ADS  Google Scholar 

  16. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001)

    Article  ADS  Google Scholar 

  17. W. Watanabe, T. Asano, K. Yamada, K. Itoh, J. Nishii, Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491–2493 (2003)

    Article  ADS  Google Scholar 

  18. K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408–411 (2000)

    Article  ADS  Google Scholar 

  19. S. Nakashima, K. Sugioka, K. Midorikawa, Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation. Appl. Phys. A Mater. Sci. Process. 104, 993–996 (2011)

    Article  ADS  Google Scholar 

  20. S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, K. Mukai, Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass. Opt. Express 20, 28191–28199 (2012)

    Article  ADS  Google Scholar 

  21. K. Hirao, K. Miura, Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non Cryst. Solids 239, 91–95 (1998)

    Article  ADS  Google Scholar 

  22. J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82, 2371–2373 (2003)

    Article  ADS  Google Scholar 

  23. S. Fan, G. Wu, H. Zhang, Y. Yu, J. Qiu, G. Dong, Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation. J. Mater. Chem. C 3, 6725–6736 (2015)

    Article  Google Scholar 

  24. P.H.D. Ferreira, A.J.G. Okuta, E.C. Barbano, D.S. Manoel, F.S. De Vicente, D.R. Vollet, D.A. Donatti, L. Misoguti, C.R. Mendonca, Femtosecond laser fabrication of waveguides in rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Opt. Mater. 47, 310–314 (2015)

    Article  ADS  Google Scholar 

  25. S. Nakashima, A. Hoshino, J. Cai, K. Mukai, Thiol-stabilized PbS quantum dots with stable luminescence in the infrared spectral range. J. Cryst. Growth 378, 542–545 (2013)

    Article  ADS  Google Scholar 

  26. S. Nakashima, K. Kikushima, K. Mukai, Infrared emitting property and spherical symmetry of colloidal PbS quantum dots. J. Cryst. Growth 378, 537–541 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant-in-Aid for Young Scientists B (No. 16K18234) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and by Nippon Sheet Glass Foundation for Materials Science and Engineering, and by the Amada Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seisuke Nakashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, S., Tanaka, T., Ishida, A. et al. Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser. Appl. Phys. A 123, 723 (2017). https://doi.org/10.1007/s00339-017-1349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1349-8

Navigation