Skip to main content

Advertisement

Log in

Torrefaction of Fast-Growing Colombian Wood Species

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this paper is to report fuel properties and torrefaction behavior of woody biomass from the Colombian highlands. Four wood species (Eucalyptus grandis, Pinus Maximinoi, Pinus patula, and Gmelina arborea) were selected due to their potential for expansion as bioenergy crops. Torrefaction of these feedstocks for the production of pellets for both domestic and international markets is a promising way to take advantage of these resources. Herein we report the impact of torrefaction temperature (between 200 and 300 °C) on the proximate and ultimate composition, heating value, thermal stability, and volatile products of the resulting solids. Although, all samples studied have similar volatile contents (70 wt%), heating value (~ 18.7 MJ/kg), and ash content (< 1 wt%), their thermal behavior during torrefaction is different. Our results confirm that the fuel properties of the materials studied have been improved by torrefaction. Py/GC-MS studies of torrefied materials suggest that the torrefaction conditions studied do not affect the structure of cellulose and lignin fractions; thus, the yield and composition of volatile products was not dramatically affected by the torrefaction conditions. The resulting materials could be good feedstocks for centralized pyrolysis based bio-refineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barrera, R., Salazar, C., Perez, J.F.: Thermochemical equilibrium model of synthetic natural gas production from coal gasification using Aspen Plus. Int. J. Chem. Eng. (2014). https://doi.org/10.1155/2014/192057

    Article  Google Scholar 

  2. Unidad de Planeación Minero Energética: Balance de gas natural en Colombia 2015–2023, Bogotá. http://www.upme.gov.co/SeccionHidrocarburos_sp/Publicaciones/2016/Balance_Gas_Natural_2016_2025.pdf (2015). Accessed 10 Jan 2017

  3. Pérez, J.F., Barrera, R., Salazar, C.: Producción de gas natural sintético mediante gasificación de carbones colombianos. Análisis termodinámico usando Aspen Plus. Editorial Universidad de Antioquia, Medellín (2015)

    Google Scholar 

  4. ITTO (International Tropical Timber Association): Colombia. Status of tropical forest management. http://www.itto.int/sfm_detail/id=12490000 (2005). Accessed 13 Jan 2017

  5. Del Valle, I., Restrepo, H., Osorio, L.F.: Valoración del potencial energético de núcleos forestale. In: Perez, J.F., Osorio, L.F. (eds.) Biomasa forestal como alternativa energética. Análisis silvicultural, técnico y financiero de proyectos. Editorial Universidad de Antioquia, Medellín (2014)

    Google Scholar 

  6. FEDEMADERAS: Acuerdo de competitividad cadena productiva forestal, madera, tableros, muebles y productos de madera. http://fedemaderas.org.co/admin/documentos/ACUERDO-DE-COMPETITIVIDAD-FORESTAL-NACIONAL.pdf (2011). Accessed 17 Jan 2017

  7. Villota, N., Moreno, R., Gutiérrez, E., Zúñiga, J., Trujillo, J., Montes, A.: Pacto Intersectorial por la madera legal en Colombia 2015–2018. http://www.bosquesflegt.gov.co/sites/default/files/publicaciones/PIMLC_VF_impresa_baja-resol.pdf (2015). Accessed 21 Jan 2017

  8. Tanger, P., Field, J.L., Jahn, C.E., DeFoort, M.W., Leach, J.E.: Biomass for thermochemical conversion: targets and challenges. Front. Plant Sci. (2013). https://doi.org/10.3389/fpls.2013.00218

    Article  Google Scholar 

  9. Phanphanich, M., Mani, S.: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 102(2), 1246–1253 (2011)

    Article  Google Scholar 

  10. Van der Stelt, M., Gerhauser, H., Kiel, J., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg. 35(9), 3748–3762 (2011)

    Google Scholar 

  11. Bridgeman, T.G., Jones, J., Williams, A., Waldron, D.J.: An investigation of the grindability of two torrefied energy crops. Fuel 89(12), 3911–3918 (2010)

    Article  Google Scholar 

  12. Chen, W.H., Kuo, P.C.: A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35(6), 2580–2586 (2010)

    Article  Google Scholar 

  13. Chen, W.H., Kuo, P.C.: Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36(11), 6451–6460 (2011)

    Article  Google Scholar 

  14. Pelaez-Samaniego, M.R., Englund, K.R.: Production of sugars from wood waste materials via enzymatic hydrolysis. Waste Biomass Valoriz. 8(3), 883–892 (2017)

    Article  Google Scholar 

  15. Lenis, Y.A., Pérez, J.F., Melgar, A.: Fixed bed gasification of Jacaranda Copaia wood: effect of packing factor and oxygen enriched air. Ind. Crops Prod. 84, 166–175 (2016)

    Article  Google Scholar 

  16. Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E., McDonald, A.G.: Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J. Anal. Appl. Pyrolysis 109, 222–233 (2014)

    Article  Google Scholar 

  17. Wang, Z., Pecha, B., Westerhof, R.J.M., Kersten, S.R., Li, C.Z., McDonald, A.G., Garcia-Perez, M.: Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind. Eng. Chem. Res. 53(8), 2940–2955 (2014)

    Article  Google Scholar 

  18. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544(1–2), 191–198 (2005)

    Article  Google Scholar 

  19. Ramos-Carmona, S., Pérez, J.F., Pelaez-Samaniego, M.R., Barrera, R., Garcia-Perez, M.: Effect of torrefaction temperature on properties of Patula pine. Maderas Cienc. Technol. 19(1), 39–50 (2017)

    Google Scholar 

  20. Neupane, S., Adhikari, S., Wang, Z., Ragauskas, A.J., Pu, Y.: Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis. Green Chem. 17(4), 2406–2417 (2015)

    Article  Google Scholar 

  21. Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E.: Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. Biomass Bioenerg. 81, 117–128 (2015)

    Article  Google Scholar 

  22. Barrera, R., Perez, J.F., Salazar, C.: Colombian coals: classification and thermochemical characterization for energy applications. Rev. ION 27, 43–54 (2014)

    Google Scholar 

  23. Ghetti, P.: DTG combustion behaviour of coal. Fuel 65, 636–639 (1986)

    Article  Google Scholar 

  24. Pérez, J.F., Melgar, A., Horrillo, A.: Thermodynamic methodology to support the selection of feedstocks for decentralised downdraft gasification power plants. Int. J. Sustain. Energy 36(10), 1010–1028 (2017)

    Article  Google Scholar 

  25. Williams, O., Eastwick, C., Kingman, S., Giddings, D., Lormor, S., Lester, E.: Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian la Loma coal. Fuel 158, 379–387 (2015)

    Article  Google Scholar 

  26. Jenkins, B.M., Baxter, L.L., Miles, T.R. Jr., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54(1–3), 17–46 (1998)

    Article  Google Scholar 

  27. Martínez, J., Villamizar, R., Ortíz, O.: Characterization and evaluation of cocoa (Theobroma cacao l.) pod husk as a renewable energy source. Agrociencia 49, 329–345 (2015)

    Google Scholar 

  28. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Wang, X., He, F., Li, H.: Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour. Technol. 176, 15–22 (2015)

    Article  Google Scholar 

  29. Salour, D., Jenkins, B.M., Vafaei, M., Kayhanian, M.: Control of in-bed agglomeration by fuel blending in a pilot scale straw and wood fueled AFBC. Biomass Bioenerg. 4(2), 117–133 (1993)

    Article  Google Scholar 

  30. Hill, S.J., Grigsby, W.J., Hall, P.W.: Chemical and cellulose crystallite changes in Pinus radiata during torrefaction. Biomass Bioenerg. 56, 92–98 (2013)

    Article  Google Scholar 

  31. Chen, W.H., Cheng, W.Y., Lu, K.M., Huang, Y.P.: An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Appl. Energy 88(11), 3636–3644 (2011)

    Article  Google Scholar 

  32. Chen, W.-H., Kuo, P.-C.: Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2), 803–811 (2011)

    Article  Google Scholar 

  33. Lu, K.M., Lee, W.J., Chen, W.H., Liu, S.H., Lin, T.C.: Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour. Technol. 123, 98–105 (2012)

    Article  Google Scholar 

  34. Nocquet, T., Dupont, C., Commandre, J.M., Grateau, M., Thiery, S., Salvador, S.: Volatile species release during torrefaction of wood and its macromolecular constituents: part 1—experimental study. Energy 72, 180–187 (2014)

    Article  Google Scholar 

  35. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G.: Torrefaction of wood. Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 77(1), 35–40 (2006)

    Article  Google Scholar 

  36. Deng, J., Wang, G.J., Kuang, J.H., Zhang, Y.L., Luo, Y.H.: Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrolysis 86(2), 331–337 (2009)

    Article  Google Scholar 

  37. Tumuluru, S.J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D.: A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7(5), 384–401 (2011)

    Article  Google Scholar 

  38. Granados, D.A., Basu, P., Chejne, F., Nhuchhen, D.R.: Detailed investigation into torrefaction of wood in a two-stage inclined rotary torrefier. Energy Fuels 31, 647–658 (2017)

    Article  Google Scholar 

  39. Arteaga-Pérez, L.E., Segura, C., Espinoza, D., Radovic, L.R., Jiménez, R.: Torrefaction of Pinus radiata and Eucalyptus globulus: a combined experimental and modeling approach to process synthesis. Energy Sustain. Dev. 29, 13–23 (2015)

    Article  Google Scholar 

  40. Ibrahim, R.H., Darvell, L.I., Jones, J.M., Williams, A.: Physicochemical characterisation of torrefied biomass. J. Anal. Appl. Pyrolysis 103, 21–30 (2013)

    Article  Google Scholar 

  41. Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J.: Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1), 147–154 (2012)

    Article  Google Scholar 

  42. Shoulaifar, K.T., DeMartini, N., Willför, S., Pranovich, A., Smeds, A.I., Virtanen, T.A.P., Maunu, S.L., Verhoeff, F., Kiel, J.H., Hupa, M.: Impact of torrefaction on the chemical structure of birch wood. Energy Fuels 28(6), 3863–3872 (2014)

    Article  Google Scholar 

  43. Arias, B., Pevida, C., Fermoso, J., Plaza, M.G., Rubiera, F., Pis, J.J.: Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89(2), 169–175 (2008)

    Article  Google Scholar 

  44. Mafu, L.D., Neomagus, H.W., Everson, R.C., Carrier, M., Strydom, C.A., Bunt, J.R.: Structural and chemical modifications of typical South African biomasses during torrefaction. Bioresour. Technol. 202, 192–197 (2016)

    Article  Google Scholar 

  45. Chen, W., Zhuang, Y., Liu, S., Juang, T., Tsai, C.: Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour. Technol. 199, 367–374 (2016)

    Article  Google Scholar 

  46. Sermyagina, E., Saari, J., Zakeri, B., Kaikko, J., Vakkilainen, E.: Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant. Appl. Energy 149, 24–34 (2015)

    Article  Google Scholar 

  47. Starfelt, F., Tomas, E., Li, H., Dotzauer, E.: Integration of torrefaction in CHP plants: a case study. Energy Convers. Manag. 90, 427–435 (2015)

    Article  Google Scholar 

  48. Sarvaramini, A., Larachi, F.: Integrated biomass torrefaction: chemical looping combustion as a method to recover torrefaction volatiles energy. Fuel 116, 158–167 (2014)

    Article  Google Scholar 

  49. Park, J., Meng, J., Lim, K.H., Rojas, O.J., Park, S.: Transformation of lignocellulosic biomass during torrefaction. J. Anal. Appl. Pyrolysis 100, 199–206 (2013)

    Article  Google Scholar 

  50. Chen, W.H., Hsu, H.C.:, Lu, K.M., Lee, W.J., Lin, T.C.: Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36(5), 3012–3021 (2011)

    Article  Google Scholar 

  51. Chen, W.H., Kuo, P.C., Liu, S.H., Wu, W.: Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy 71, 40–48 (2014)

    Article  Google Scholar 

  52. Yang, Z., Sarkar, M., Kumar, A., Tumuluru, J.S., Huhnke, R.L.: Effects of torrefaction and densification on switchgrass pyrolysis products. Bioresour. Technol. 174, 266–273 (2014)

    Article  Google Scholar 

  53. Zhang, S., Dong, Q., Zhang, L., Xiong, Y.: Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour. Technol. 199, 352–361 (2016)

    Article  Google Scholar 

  54. Klinger, J., Bar-Ziv, E., Shonnard, D.: Unified kinetic model for torrefaction–pyrolysis. Fuel Process. Technol. 138, 175–183 (2015)

    Article  Google Scholar 

  55. Westerhof, R.J., Brilman, D.W., Garcia-Perez, M., Wang, Z., Oudenhoven, S.R., Kersten, S.R.: Stepwise fast pyrolysis of pine wood. Energy Fuels 26(12), 7263–7273 (2012)

    Article  Google Scholar 

  56. Liaw, S.-S., Zhou, S., Wu, H., Garcia-Perez, M.: Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel 103, 672–682 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of CODI-Universidad de Antioquia through the research project “Integration strategies of wood planted in Colombia under thermochemical bio-refinery concepts: thermodynamic analysis and characterization of bioproducts (in Spanish)—PRG2014-1016” and the support of the same institution (UDEA) through the project “Sostenibilidad 2016–2017”. The contribution of Dr. Filip Stankovic on Py-GC/MS chromatograms analysis is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, J.F., Pelaez-Samaniego, M.R. & Garcia-Perez, M. Torrefaction of Fast-Growing Colombian Wood Species. Waste Biomass Valor 10, 1655–1667 (2019). https://doi.org/10.1007/s12649-017-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0164-y

Keywords

Navigation