Skip to main content
Log in

Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (< 15 min), and chimie douce (soft chemical, low temperature), in nature; this results in the formation of Eu doped ZnO. The explosion chamber contains oxygen (99.9%) at atmospheric pressure. Electron micrographs indicate that the particle sizes are ∼ 80 nm. Diffractogram-based analysis suggests that the crystallite size is ~ 18–20 nm in the as-prepared doped ZnO nanoparticles. Electron paramagnetic resonance shows the presence of Zn vacancies and the cryo-photoluminescence spectrum indicates that Eu exists in the + 3 state. A combined Williamson–Hall plot and Kisielowski’s model based analysis indicates that Eu is a substitutional dopant in WEP derived Eu:ZnO particles. It is estimated that this material has ∼ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation–anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm−1 to 493 cm−1; with peak shifts from 436 cm−1 to 430 cm−1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ishizumi, Y. Taguchi, A. Yamamoto, and Y. Kanemitsu, Thin Solid Films 486, 50 (2005).

    Article  Google Scholar 

  2. A. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005).

    Article  Google Scholar 

  3. J. Yang, X. Li, J. Lang, L. Yang, M. Wei, M. Gao, X. Liu, H. Zhai, R. Wang, Y. Liu, and J. Cao, Mater. Sci. Semicond. 14, 247 (2011).

    Article  Google Scholar 

  4. A.B. Djurišić, A.M.C. Ng, and X.Y. Chen, Prog. Quantum Electron. 34, 191 (2010).

    Article  Google Scholar 

  5. D.C. Look, Mater. Sci. Eng. B Adv. 80, 383 (2001).

    Article  Google Scholar 

  6. J. Wojnarowicz, R. Mukhovskyi, E. Pietrzykowska, S. Kusnieruk, J. Mizeracki, and W. Lojkowski, Beilstein J. Nanotechnol. 7, 721 (2016).

    Article  Google Scholar 

  7. R.K. Shukla, A. Srivastava, N. Kumar, A. Pandey, and M. Pandey, Mater. Sci. Pol. 32, 354 (2016).

    Google Scholar 

  8. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, and U. Haboeck, Phys. Status Solidi B 241, 231 (2004).

    Article  Google Scholar 

  9. Keigo Suzuki, Koji Murayama, and Nobuhiko Tanaka, Appl. Phys. Lett. 107, 031902 (2015).

    Article  Google Scholar 

  10. T. Thomas, M.V. Chandrashekhar, C.B. Poitras, J. Shi, J.C. Reiherzer, F.J. DiSalvo, M. Lipson, and M.G. Spencer, in MRS Fall Meeting (2008), pp. 91–96.

  11. T. Thomas, X. Guo, M.V.S. Chandrashekhar, C.B. Poitras, W. Shaff, M. Dreibelbis, J. Reiherzer, K. Li, F.J. DiSalvo, M. Lipson, and M.G. Spencer, J. Cryst. Growth 311, 4402 (2009).

    Article  Google Scholar 

  12. R. Anthony, West, Solid State Chemistry and its Applications, 2nd ed. (New York: Wiley, 2014), pp. 476–482.

    Google Scholar 

  13. P.M. Aneesh and M.K. Jayaraj, B Mater. Sci. 33, 227 (2010).

    Article  Google Scholar 

  14. L.D. Sun, C.H. Yan, Y.W. Zhang, and Y.P. Du, J. Phys. Chem. C 112, 12234 (2008).

    Article  Google Scholar 

  15. S.K. Lathika Devi, K. Sudarsana Kumar, and A. Balakrishnan, Mater. Lett. 65, 35 (2011).

    Article  Google Scholar 

  16. A. Franco Jr, H.V.S. Pessoni, and M.P. Soares, J. Magn. Magn. Mater. 355, 325 (2014).

    Article  Google Scholar 

  17. V. Snitka, V. Jankauskas, A. Zunda, and V. Mizariene, Mater. Lett. 61, 1763 (2007).

    Article  Google Scholar 

  18. R.S. Reddy, R.S. Tavarmani, A. Okamoto, H. Suematsu, P. Selvam, U.K. Mudali, and M. Kamaraj, IEEE T. Plasma Sci. 43, 3470 (2015).

    Article  Google Scholar 

  19. R.S. Reddy, M. Kamaraj, U.K. Mudali, S.R. Chakravarthy, and R. Sarathi, Mater. Trans. 53, 1420 (2012).

    Article  Google Scholar 

  20. S. Krishnan, A.S.M.A. Haseeb, and M.R. Johan, J. Alloys Compd. 586, 360 (2014).

    Article  Google Scholar 

  21. Y.S. Lee, B. Bora, S.L. Yap, and C.S. Wong, Curr. Appl. Phys. 12, 199 (2012).

    Article  Google Scholar 

  22. W. Jadwisienczak, K. Wisniewski, M. Spencer, T. Thomas, and D. Ingram, Radiat. Meas. 45, 500 (2010).

    Article  Google Scholar 

  23. S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, and K. Niihara, IOP Conf. Ser. Mater. Sci. 21, 012013 (2011).

    Article  Google Scholar 

  24. L. Besra and M. Liu, Prog. Mater. Sci. 52, 1 (2007).

    Article  Google Scholar 

  25. T. Thomas, X. Guo, J. Shi, L.A. Lepak, M.V.S. Chandrashekhar, K. Li, F.J. DiSalvo, and M.G. Spencer, J. Cryst. Growth 316, 90 (2011).

    Article  Google Scholar 

  26. V. Snitka, V. Jankauskas, A. Žunda, V. Mizariene, and G. Seniunas, Phys. Status Solidi B 244, 1504 (2007).

    Article  Google Scholar 

  27. A.J. Steckl, J.C. Heikenfeld, D.S. Lee, M.J. Garter, C.C. Baker, Y. Wang, and R. Jones, IEEE J. Sel. Top. Quant. 8, 749 (2002).

    Article  Google Scholar 

  28. P. Pandey, R. Kurchania, and F.Z. Haque, J. Adv. Phys. (2014). https://doi.org/10.1166/jap.2014.1120.

    Google Scholar 

  29. M. Verde, M. Peiteado, M. Villegas, B. Ferrari, and A.C. Caballero, Mater. Chem. Phys. 140, 75 (2013).

    Article  Google Scholar 

  30. J. Li, Y.J. Wu, T. Yamamoto, and M. Kuwabara, Sci. Technol. Adv. Mater. 5, 393 (2004).

    Article  Google Scholar 

  31. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  Google Scholar 

  32. R.H. Krishna, B.M. Nagabhushana, B.N. Sherikar, N. Suriya Murthy, C. Shivakumara, and T. Thomas, Chem. Eng. J. 267, 317 (2015).

    Article  Google Scholar 

  33. A. Janotti and C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

  34. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  Google Scholar 

  35. R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, R.P.S. Chakradhar, R. Sivaramakrishna, C. Shivakumara, and T. Thomas, J. Alloys Compd. 585, 129 (2014).

    Article  Google Scholar 

  36. Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi, and S. Ibuki, Jpn. J. Appl. Phys. 34, 1878 (1995).

    Article  Google Scholar 

  37. A.J. Reddy, M.K. Kokila, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, B.M. Nagabhushana, and R.H. Krishna, Spectrochim. Acta A 132, 305 (2014).

    Article  Google Scholar 

  38. P.K. Baitha and J. Manam, Optik Int. J. Light Electron Opt. 126, 4916 (2015).

    Article  Google Scholar 

  39. A. Mesaros, D. Toloman, M. Nasui, R.B. Mos, T. Petrisor, B.S. Vasile, V.A. Surdu, I. Perhaita, A. Birisand, and O. Pana, J. Mater. Sci. 50, 6075 (2015).

    Article  Google Scholar 

  40. G.S. Thool, M. Arunakumari, A.K. Singh, and S.P. Singh, B Mater. Sci. 38, 1519 (2015).

    Article  Google Scholar 

  41. T.B. Ivetić, M.R. Dimitrievska, I.O. Guth, L.R. Dačanin, and S.R. Lukić-Petrović, J. Res. Phys. 36, 43 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiju Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavi, B., Sathyan, S., Yoshimura, T. et al. Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO. J. Electron. Mater. 47, 1924–1931 (2018). https://doi.org/10.1007/s11664-017-5991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5991-x

Keywords

Navigation