Skip to main content
Log in

Use of qNMR for speciation of flaxseeds (Linum usitatissimum) and quantification of cyanogenic glycosides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This report describes a routine method taking less than 20 min to quantify cyanogenic glycosides such as linustatin and neolinustatin from flaxseeds (Linum usitatissimum L.) using 1H nuclear magnetic resonance. After manual dehulling, a higher linustatin content was shown in the almond fraction, while neolinustatin and total cyanogenic glycoside contents were significantly higher in hulls. Linustatin and neolinustatin were quantified in seven cultivars grown in two locations in three different years. Linustatin, neolinustatin, and total cyanogenic glycosides ranged between 91 and 267 mg/100 g, 78–272 mg/100 g, and 198–513 mg/100 g dry weight flaxseeds, respectively. NMR revealed differences of up to 70% between samples with standard deviation variations lower than 6%. This study shows that NMR is a very suitable tool to perform flaxseed varietal selection for the cyanogenic glycoside content.

qNMR can be used to perform flaxseed varietal selection for the cyanogenic glycoside content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zagrobelny M, Bak S, Møller BL. Cyanogenesis in plants and arthropods. Phytochemistry. 2008;69:1457–68.

    Article  CAS  Google Scholar 

  2. Flematti GR, Waters MT, Scaffidi A, Merritt DJ, Ghisalberti EL, Dixon KW, et al. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol Plant. 2013;6:29–37.

    Article  CAS  Google Scholar 

  3. Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol. 2014;65:155–85.

    Article  CAS  Google Scholar 

  4. Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, et al. β-glucosidases as detonators of plant chemical defense. Phytochemistry. 2008;69:1795–813.

    Article  CAS  Google Scholar 

  5. Gleadow RM, Woodrow IE. Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 2000;20:591–8.

    Article  CAS  Google Scholar 

  6. Lamont BB. Injury-induced cyanogenesis in vegetative and reproductive parts of two Grevillea species and their F1 hybrid. Ann Bot. 1993;71:537–42.

    Article  Google Scholar 

  7. Till I. Variability of expression of cyanogenesis in white clover (Trifolium repens L.). Heredity. 1987;59:265–71.

    Article  Google Scholar 

  8. Webber BL, Woodrow IE. Chemical and physical plant defence across multiple ontogenetic stages in a tropical rain forest understorey tree. J Ecol. 2009;97:761–71.

    Article  CAS  Google Scholar 

  9. Dahler JM, Mcconchie C, Turnbull CGN. Quantification of cyanogenic glycosides in seedlings of three Macadamia (Proteaceae) species. Aust J Bot. 1995;43:619–28. https://doi.org/10.1071/bt9950619.

    Article  CAS  Google Scholar 

  10. Selmar D, Lieberei R, Biehl B. Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 1988;86:711–6.

    Article  CAS  Google Scholar 

  11. Swain E, Li CP, Poulton JE. Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds. Plant Physiol. 1992;100:291–300.

    Article  CAS  Google Scholar 

  12. Schwarz B, Wray V, Proksch P. A cyanogenic glycoside from Canthium schimperianum. Phytochemistry. 1996;42:633–6.

    Article  CAS  Google Scholar 

  13. Oomah BD, Mazza G, Kenaschuk EO. Cyanogenic compounds in flaxseed. J Agric Food Chem. 1992;40:1346–8.

    Article  CAS  Google Scholar 

  14. Frehner M, Scalet M, Conn EE. Pattern of the cyanide-potential in developing fruits implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiol. 1990;94:28–34.

    Article  CAS  Google Scholar 

  15. Fan TW-M, Conn EE. Isolation and characterization of two cyanogenic β-glucosidases from flax seeds. Arch Biochem Biophys. 1985;243:361–73.

    Article  CAS  Google Scholar 

  16. Tarpila A, Wennberg T, Tarpila S. Flaxseed as a functional food. Curr Top Nutraceutical Res. 2005;3:167–88.

    CAS  Google Scholar 

  17. Hall C, Tulbek MC, Xu Y. Flaxseed. Adv Food Nutr Res. 2006;51:1–97.

    Article  CAS  Google Scholar 

  18. Schilcher H, Wilkens-Sauter M. Quantitative Bestimmung cyanogener Glykoside in Linum usitatissimum. Mit Hilfe der HPLC. Fette Seifen Anstrichm. 1986;88:287–90.

    Article  CAS  Google Scholar 

  19. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol. 2014;38:5–20.

    Article  CAS  Google Scholar 

  20. Gettler AO, Baine JO. The toxicology of cyanide. Am J Med Sci. 1938;195:182–97.

    Article  CAS  Google Scholar 

  21. Schulz V, Löffler A, Gheorghiu T. Resorption of hydrocyanic acid from linseed. Leber Magen Darm. 1983;13:10–4.

    CAS  Google Scholar 

  22. Oomah BD, Mazza G. Effect of dehulling on chemical composition and physical properties of flaxseed. LWT - Food Sci Technol. 1997;30:135–40.

    Article  CAS  Google Scholar 

  23. Madhusudhan B, Wiesenborn D, Schwarz J, Tostenson K, Gillespie J. A dry mechanical method for concentrating the lignan secoisolariciresinol diglucoside in flaxseed. LWT - Food Sci Technol. 2000;33:268–75.

    Article  CAS  Google Scholar 

  24. Smith CR, Weisleder D, Miller RW, Palmer IS, Olson OE. Linustatin and neolinustatin: cyanogenic glycosides of linseed meal that protect animals against selenium toxicity. J Org Chem. 1980;45:507–10.

    Article  CAS  Google Scholar 

  25. Schuster W, Marquard R. Sorten-und umweltbedingte Unterschiede einiger Qualitätsmerkmale bei Leinsamen. Eur J Lipid Sci Technol. 1974;76:207–17.

    CAS  Google Scholar 

  26. Bacala R, Barthet V. Development of extraction and gas chromatography analytical methodology for cyanogenic glycosides in flaxseed (Linum usitatissimum). J AOAC Int. 2007;90:153–61.

    CAS  Google Scholar 

  27. Bharti SK, Roy R. Quantitative 1H NMR spectroscopy. TrAC Trends Anal Chem. 2012;35:5–26.

    Article  CAS  Google Scholar 

  28. Santos Pimenta LP, Schilthuizen M, Verpoorte R, Choi YH. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using 1H-NMR spectroscopy. Phytochem Anal. 2014;25:122–6.

    Article  CAS  Google Scholar 

  29. Simmler C, Napolitano JG, McAlpine JB, Chen S-N, Pauli GF. Universal quantitative NMR analysis of complex natural samples. Curr Opin Biotechnol. 2014;25:51–9.

    Article  CAS  Google Scholar 

  30. Barthet VJ, Bacala R. Development of optimized extraction methodology for cyanogenic glycosides from flaxseed (Linum usitatissimum). J AOAC Int. 2010;93:478–84.

    CAS  Google Scholar 

  31. Pauli GF, Gödecke T, Jaki BU, Lankin DC. Quantitative 1H NMR. Development and potential of an analytical method: an update. J Nat Prod. 2012;75:834–51.

    Article  CAS  Google Scholar 

  32. Martineau E, Tea I, Akoka S, Giraudeau P. Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D 1H INADEQUATE NMR. NMR Biomed. 2012;25:985–92.

    Article  CAS  Google Scholar 

  33. Quéro A, Molinié R, Mathiron D, Thiombiano B, Fontaine J-X, Brancourt D, et al. Metabolite profiling of developing Camelina sativa seeds. Metabolomics. 2016;12:186–200.

    Article  Google Scholar 

  34. Ludwig C, Viant MR. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal. 2010;21:22–32.

    Article  CAS  Google Scholar 

  35. Thrippleton MJ, Edden RAE, Keeler J. Suppression of strong coupling artefacts in J-spectra. J Magn Reson. 2005;174:97–109.

    Article  CAS  Google Scholar 

  36. Mckay RT. How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson Part A. 2011;38A:197–220.

    Article  CAS  Google Scholar 

  37. McKenzie JS, Donarski JA, Wilson JC, Charlton AJ. Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics. Prog Nucl Magn Reson Spectrosc. 2011;59:336–59.

    Article  CAS  Google Scholar 

  38. Pauli GF, Chen S-N, Simmler C, Lankin DC, Gödecke T, Jaki BU, et al. Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay: Miniperspective. J Med Chem. 2014;57:9220–31.

    Article  CAS  Google Scholar 

  39. Zhang Z-M, Chen S, Liang Y-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst. 2010;135:1138–46.

    Article  CAS  Google Scholar 

  40. Tomasi G, Savorani F, Engelsen SB. icoshift: an effective tool for the alignment of chromatographic data. J Chromatogr A. 2011;1218:7832–40.

    Article  CAS  Google Scholar 

  41. Hübel W, Nahrstedt A, Wray V. A structural investigation by 13C-NMR of the cyanogenic glycosides. Arch Pharm (Weinheim). 1981;314:609–17.

    Article  Google Scholar 

  42. El-Youssef HM, Murphy BT, Amer ME, Abdel-Kader MS, Kingston DJ. Phytochemical and biological study of the aerial parts of Lotus lalambensis growing in Saudi Arabia. Saudi Pharm J. 2008;16:122–34.

    CAS  Google Scholar 

  43. Ribeiro AA. 1H and 13C NMR analysis of D-amygdalin: oligosaccharide assignment and sequencing. Magn Reson Chem. 1990;28:765–73.

    Article  CAS  Google Scholar 

  44. Bharti SK, Sinha N, Joshi BS, Mandal SK, Roy R, Khetrapal CL. Improved quantification from 1H-NMR spectra using reduced repetition times. Metabolomics. 2008;4:367–76.

    Article  CAS  Google Scholar 

  45. Evilia RF. Quantitative NMR spectroscopy. Anal Lett. 2001;34:2227–36.

    Article  CAS  Google Scholar 

  46. Hendrick RE. Tissue relaxation. In: Breast MRI fundamentals and technical aspects. New York: Springer; 2008. p. 19–29.

    Google Scholar 

  47. Ramsay A, Fliniaux O, Fang J, Molinie R, Roscher A, Grand E, et al. Development of an NMR metabolomics-based tool for selection of flaxseed varieties. Metabolomics. 2014;10:1258–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the GRANOLIN consortium. R. Roulard wishes to thank OSEO for the award of a PhD grant. The authors are grateful for financial support from the European Regional Development Fund (ERDF). F. Mesnard wishes to acknowledge COST action FA 1006. The authors wish to thank Beatriz Oves Suarez for her participation in statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mesnard.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roulard, R., Fontaine, JX., Jamali, A. et al. Use of qNMR for speciation of flaxseeds (Linum usitatissimum) and quantification of cyanogenic glycosides. Anal Bioanal Chem 409, 7011–7026 (2017). https://doi.org/10.1007/s00216-017-0637-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0637-7

Keywords

Navigation