Skip to main content

Advertisement

Log in

Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: analytical characterization and biological activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work focuses on the idea to prevent and/or inhibit the colonization of implant surfaces by microbial pathogens responsible for post-operative infections, adjusting antimicrobial properties of the implant surface prior to its insertion. An antibacterial coating based on chitosan and silver was developed by electrodeposition techniques on poly(acrylic acid)-coated titanium substrates. When a silver salt was added during the chitosan deposition step, a stable and scalable silver incorporation was achieved. The physico-chemical composition of the coating was studied by X-ray photoelectron spectroscopy (XPS), while atomic force microscopy in intermittent contact mode (ICAFM) was used to explore the coating morphology. The amount of silver released from the coating up to 21 days was evaluated by inductively coupled plasma mass spectrometry (ICP-MS). The capability of the proposed coating to interact in vitro with the biological environment in terms of compatibility and antibacterial properties was assessed using MG-63 osteoblast-like cell line and S. aureus and P. aeruginosa strains, respectively. These studies revealed that a coating showing a silver surface atomic percentage equal to 0.3% can be effectively used as antibacterial system, while providing good viability of osteoblast-like cells after 7 days. The antibacterial effectiveness of the prepared coating is mainly driven by a contact killing mechanism, although the low concentration of silver released (below 0.1 ppm up to 21 days) is enough to inhibit bacterial growth, advantaging MG-63 cells in the race for the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Getzlaf MA, Lewallen EA, Kremers HM, Jones DL, Bonin CA, Dudakovic A, et al. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res. 2016;34:177–86.

    Article  Google Scholar 

  2. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–94.

    Article  Google Scholar 

  3. Brady RA, Calhoun JH, Leid JG, Shirtliff ME. Infections of orthopaedic implants and devices. In: Shirtliff ME, Leid JG, editors. The role of biofilms in device-related infections. Los Angeles: Springer; 2009. p. 15–56.

    Chapter  Google Scholar 

  4. Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, et al. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2014;32:82–90.

    Article  CAS  Google Scholar 

  5. Bagherifard S. Mediating bone regeneration by means of drug eluting implants: from passive to smart strategies. Mater Sci Eng C Mater. 2017;71:1241–52.

    Article  CAS  Google Scholar 

  6. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.

    Article  Google Scholar 

  7. Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100:1–18.

    Article  CAS  Google Scholar 

  8. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.

    Article  CAS  Google Scholar 

  9. Swartjes JJTM, Sharma PK, Kooten TG, Van der Mei HC, Mahmoudi M, Busscher HJ, et al. Current developments in antimicrobial surface coatings for biomedical applications. Curr Med Chem. 2015;22:2116–29.

    Article  CAS  Google Scholar 

  10. Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;5:13849–80.

    Article  Google Scholar 

  11. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int J Mol Sci. 2014;15:11878–921.

    Article  Google Scholar 

  12. Tracton AA. Coatings technology handbook. 5th ed. Boca Raton: CRC press; 2005.

    Book  Google Scholar 

  13. Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mat Sci Eng C. 2016;61:965–78.

    Article  CAS  Google Scholar 

  14. Bonifacio MA, Cometa S, Dicarlo M, Baruzzi F, de Candia S, Gloria A, et al. Gallium-modified chitosan/poly(acrylic acid) bilayer coatings forimproved titanium implant performances. Carbohydr Polym. 2017;15:348–57.

    Article  Google Scholar 

  15. Drake PL, Hazelwood KL. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg. 2005;49:575–85.

    CAS  Google Scholar 

  16. Necula BS, Van Leeuwen JPTM, Fratila-Apachitei LE, Zaat SAJ, Apachitei I, Duszczyk J. In vitro cytotoxicity evaluation of porous TiO2Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater. 2012;8:4191–7.

    Article  CAS  Google Scholar 

  17. Huang Y, Zhang X, Zhang H, Qiao H, Zhang X, Jia T, et al. Fabrication of silver-and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram Int. 2017;43:992–1007.

    Article  CAS  Google Scholar 

  18. Fu C, Zhang X, Savino K, Gabrys P, Gao Y, Chaimayo W, et al. Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol. 2016;301:13–9.

    Article  CAS  Google Scholar 

  19. Brunette DM, Tengvall P, Textor M, Thomsen P. Biochemical modifications of titanium surfaces. In: Titanium in medicine: material science, surface science, engineering. Springer; 2001. p. 448.

  20. Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, et al. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10:439–49.

    Article  CAS  Google Scholar 

  21. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011;22:135101.

    Article  Google Scholar 

  22. De Giglio E, Cometa S, Cioffi N, Torsi L, Sabbatini L. Analytical investigations of poly (acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Anal Bioanal Chem. 2007;389:2055–63.

    Article  Google Scholar 

  23. de Candia S, Morea M, Baruzzi F. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces. Front Microbiol. 2015;6:733.

    Article  Google Scholar 

  24. Baruzzi F, Pinto L, Quintieri L, Carito A, Calabrese N, Caputo L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int J Food Microbiol. 2015;215:179–86.

    Article  Google Scholar 

  25. Renna M, Gonnella M, de Candia S, Serio F, Baruzzi F. Efficacy of combined sous vide-microwave cooking for foodborne pathogen inactivation in ready-to-eat chicory stems. J Food Sci. 2017;in press.

  26. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13:1400–12.

    Article  CAS  Google Scholar 

  27. Renoud P, Toury B, Benayoun S, Attik G, Grosgogea B. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances. PLoS One. 2012;7:e39367.

    Article  CAS  Google Scholar 

  28. Norowski PA, Courtney HS, Babu J, Haggard WO, Bumgardner JD. Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent. 2011;20:56–67.

    Article  Google Scholar 

  29. Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J Biomed Mater Res A. 2003;66:411–6.

    Article  Google Scholar 

  30. Simchi A, Pishbin F, Boccaccini AR. Electrophoretic deposition of chitosan. Mater Lett. 2009;63:2253–6.

    Article  CAS  Google Scholar 

  31. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym. 2009;75:385–9.

    Article  CAS  Google Scholar 

  32. Trapani A, De Giglio E, Cafagna D, Denora N, Agrimi G, Cassano T, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm. 2011;419:296–307.

    Article  CAS  Google Scholar 

  33. Bera S, Gangopadhyay P, Nair KGM, Panigrahi BK, Narasimhan SV. Electron spectroscopic analysis of silver nanoparticles in a soda-glass matrix. J Electron Spectrosc Relat Phenom. 2006;152:91–5.

    Article  CAS  Google Scholar 

  34. Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N. Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Mat Res. 2012;15:159–65.

    Article  Google Scholar 

  35. Qu Q, Wang L, Chen Y, Li L, He Y, Ding Z. Corrosion behavior of titanium in artificial saliva by lactic acid. Materials. 2014;7:5528–42.

    Article  Google Scholar 

  36. Pang X, Zhitomirsky I. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surf Coat Technol. 2008;202:3815–21.

    Article  CAS  Google Scholar 

  37. López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem. 2012;61:260–7.

    Article  Google Scholar 

  38. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.

    Article  CAS  Google Scholar 

  39. Tang C, Hu D, Cao Q, Yan W, Xing B. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity. Appl Surf Sci. 2017;394:457–65.

    Article  CAS  Google Scholar 

  40. Jia Z, Xiu P, Li M, Xu X, Shi Y, Cheng Y, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials. 2016;75:203–22.

    Article  CAS  Google Scholar 

  41. Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol. 2009;54:595–601.

    Article  Google Scholar 

  42. Lansdown AB. Silver: antibacterial properties and mechanism of action. J Wound Care. 2002;11:125–30.

    Article  CAS  Google Scholar 

  43. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54:4208–18.

    Article  CAS  Google Scholar 

  44. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.

    Article  CAS  Google Scholar 

  45. Billiau A, Edy VG, Heremans H, Van Damme J, Desmyter J, Georgiades JA, et al. Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother. 1977;12:11–5.

    Article  CAS  Google Scholar 

  46. De Giglio E, Cometa S, Ricci MA, Zizzi A, Cafagna D, Manzotti S, et al. Development and characterization of rhVEGF-loaded poly (HEMA–MOEP) coatings electrosynthesized on titanium to enhance bone mineralization and angiogenesis. Acta Biomater. 2010;6:282–90.

    Article  Google Scholar 

  47. De Giglio E, Cometa S, Ricci MA, Cafagna D, Savino AM, Sabbatini L, et al. Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomater. 2011;7:882–91.

    Article  Google Scholar 

  48. De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC, et al. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem. 2013;405:805–16.

    Article  Google Scholar 

  49. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743–8.

    CAS  Google Scholar 

Download references

Acknowledgements

The use of the Varioskan Flash (Thermo Fischer Scientific) spectrofluorimeter was possible thank to the laboratory network project “Biodiversity for food production and safety enhancement of typical Apulian foods - BioNet-PTP” (Cod. 73) - POR Puglia FESR 2000-2006.

Funding

This work was supported by Università degli Studi di Bari Aldo Moro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira De Giglio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cometa, S., Bonifacio, M.A., Baruzzi, F. et al. Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: analytical characterization and biological activity. Anal Bioanal Chem 409, 7211–7221 (2017). https://doi.org/10.1007/s00216-017-0685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0685-z

Keywords

Navigation