Skip to main content
Log in

Depolarization currents in illite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In ceramic materials, depolarization effects take place when an external electrical field is removed. Therefore, an understanding of mechanisms of polarization and depolarization is important for a more accurate control of furnace temperature and DC or pulse electrical field in flash sintering. In this paper, depolarization currents were measured in illitic clay samples in the temperature range 450–1100 °C for 150–300 min. The ionic component was dominant in these depolarization currents. Time dependences of depolarization currents suggested several depolarization mechanisms took place. They were caused by localized hopping or migration of K+, Na+, H+, and OH ions, which were the dominant charge carriers in various temperature ranges, in the internal electric field induced by space charges at electrodes. Depolarization is a long-lasting process at high temperatures and influences the internal electrical field in ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gualtieri AF, Ferrari S. Kinetics of illite dehydroxylation. Phys Chem Miner. 2006;33:490–501.

    Article  CAS  Google Scholar 

  2. Hanykýř V, Kutzendorfer J. Technology of ceramics. Praha: Silikátový svaz; 2008.

    Google Scholar 

  3. Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The kinetics of Al–Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 2010;183:2565–9.

    Article  Google Scholar 

  4. Escalera E, Antti ML, Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conf Ser Mater Sci Eng. 2012;31:12017.

    Article  Google Scholar 

  5. Traoré K, Kabré TS, Blanchart P. Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceram Int. 2003;29:377–83.

    Article  Google Scholar 

  6. Ruotsala AP. Solid state formation of anorthite from some clay mineral-calcium mineral mixtures. Am Miner. 1963;48:792–803.

    CAS  Google Scholar 

  7. Kurama S, Ozel E. The influence of different CaO source in the production of anorthite ceramics. Ceram Int. 2009;35:827–30.

    Article  CAS  Google Scholar 

  8. Wattanasiriwech D, Srijan K, Wattanasiriwech S. Vitrification of illitic clay from Malaysia. Appl Clay Sci. 2009;43:57–62.

    Article  CAS  Google Scholar 

  9. Podoba R, Štubňa I, Trnovcová V, Trník A. Temperature dependence of DC electrical conductivity of kaolin. J Therm Anal Calorim. 2014;118:597–601.

    Article  CAS  Google Scholar 

  10. Podoba R, Trník A, Štubňa I. DC conductivity of waste calcite-clay ceramics in the temperature range 20–1050 °C. In: Thermophys 2012–Conference Proceedings. Podkylavá: Slovak Academy of Sciences. 2012. pp. 186–91.

  11. Ondruška J, Trnovcová V, Štubňa I, Podoba R. DC conductivity of ceramics with calcite waste in the temperature range 20–1050 °C. Ceram–Silik. 2015;59:176–80.

    Google Scholar 

  12. Kubliha M, Trnovcová V, Ondruška J, Štubňa I, Bošák O, Kaljuvee T, et al. DC conductivity of illitic clay after various firing. J Therm Anal Calorim. 2016;124:81–6.

    Article  CAS  Google Scholar 

  13. Ondruška J, Štubňa I, Trnovcová V, Húlan T, Vozár L. DC Conductivity of Illite with Fly-Ash between 20–1050 °C. Adv Mater Res. 2015;1126:123–8.

    Article  Google Scholar 

  14. Kubliha M, Trnovcová V, Ondruška J, Štubňa I, Bošák O, Kaljuvee T. Comparison of dehydration in kaolin and illite using DC conductivity measurements. Appl Clay Sci. 2017;149:8–12.

    Article  CAS  Google Scholar 

  15. Oreshkin PT. Electrical conductivity of refractories. Moscow: Izd. Metalurgija; 1965.

    Google Scholar 

  16. Ondruška J, Štubňa I, Trnovcová V, Medveď I, Kaljuvee T. Polarization and depolarization currents in kaolin. Appl Clay Sci. 2015;114:157–60.

    Article  Google Scholar 

  17. Ondruška J, Štubňa I, Trnovcová V, Vozár L, Bačík P. Polarization currents in illite at various temperatures. Appl Clay Sci. 2017;135:414–7.

    Article  Google Scholar 

  18. Lerdprom W, Li C, Jayaseelan DD, Skinner SJ, Lee WE. Temperature dependence of electrical conductivity of a green porcelain mixture. J Eur Ceram Soc. 2017;37:343–9.

    Article  CAS  Google Scholar 

  19. Lerdprom W, Grasso S, Jayaseelan DD, Reece MJ, Lee WE. Densification behaviour and physico-mechanical properties of porcelains prepared using spark plasma sintering. Adv Appl Ceram. 2017;116:307–15.

    Article  CAS  Google Scholar 

  20. Trombin F, Raj R. Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am Ceram Soc Bull. 2014;93:32–5.

    CAS  Google Scholar 

  21. Caliman LB, Bichaud E, Soudant P, Gouvea D, Steil MC. A simple flash sintering setup under applied mechanical stress and controlled atmosphere. MethodsX. 2015;2:392–8.

    Article  CAS  Google Scholar 

  22. Štubňa I, Trnovcová V, Vozár L, Csáki Š. Uncertainty of the measurement of dc conductivity of ceramics at elevated temperatures. J Electr Eng. 2015;66:33–8.

    Google Scholar 

  23. Blumenthal RN, Seitz MA. Experimental techniques. In: Tallan NM, editor. Electr. Conducting Ceramics and Glass. part A. New York: Marcel Dekker Inc. 1974. P. 35–168.

    Google Scholar 

  24. Ursianu E, Ursianu R, Ursianu V, Pop C. An iterative nonlinear regression for polarization/depolarization current. UPB Sci Bull Ser A Appl Math Phys. 2006;68:35–42.

    Google Scholar 

  25. Benchenane-Mehor H, Soufi MM, Saiter JM, Benzohra M. Simplex-TSDC spectroscopy: an efficient tool to measure the relaxation time of the isothermal transient depolarization current in organic dielectrics. Phys B: Condensed Matter. 2013;412:94–9.

    Article  CAS  Google Scholar 

  26. Abhishek J, Aaradhi P. Dielectric diagnosis of EHV current transformer using frequency domain spectroscopy (FDS) & polarization and depolarization current (PDC) techniques. Int J Sci Eng Res. 2012;3:1–11.

    Google Scholar 

  27. Jamail NAM, Piah MAM, Muhamad NA, Zainir RA, Kasri NF, Kamarudin QE. Polarization and depolarization current measurement of polymer added with nano-particles of silicon oxide for HV insulation. J Teknol. 2013;64:141–4.

    Google Scholar 

  28. Štubňa I, Trník A, Podoba R, Ondruška J, Vozár L. The influence of thermal expansion and mass loss on the Young’s modulus of ceramics during firing. Int J Thermophys. 2014;35:1879–87.

    Article  Google Scholar 

  29. D’ujanga FM, Kaahwa Y, Atteraas L. The polarization effects in sintered kaolin. Tanzania J Sci. 2002;28:63–70.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education, Science, Research, and Sport of the Slovak Republic [grant number VEGA 1/0162/15] and by the Grant Agency of Constantine the Philosopher University [grant number UGA VII/13/2016]. The authors are indebted to K. Mitterpach for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Ondruška.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondruška, J., Trnovcová, V., Štubňa, I. et al. Depolarization currents in illite. J Therm Anal Calorim 131, 2285–2289 (2018). https://doi.org/10.1007/s10973-017-6862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6862-7

Keywords

Navigation