Skip to main content
Log in

The Photogrammetric Reconstruction Task Solved by Bundle Adjustment Directly with Pixel Bundles

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

At present the reconstruction task of photogrammetry is performed mostly in several steps: one feature-based bundle solution followed by many dense image matchings and fusion of intermediate results. To increase the performance of reconstruction to a maximum a different definition is proposed, starting from the approach of strict digital image inversion and the correspondence condition of image grey values with the unknown function of object surface intensity (or brightness). This leads again to a bundle solution (similar to the classical solution), however, directly with the image grey values as measurements so that each pixel represents a ray and each image a high-density bundle of rays (pixel bundle). All images of a block are forced to generate optimally one function of object surface intensity together with the object surface and the orientation of the images (WROBEL, Proceedings SPIE 804, pp 325–334. In German language: Bildmessung und Luftbildwesen 1987). The diverse tasks of modern life need different methods of 3D reconstructions in diverging performance. Here, we concentrate on a high-fidelity approach of both the functional and stochastic model of image evaluation. The fundamental derivations are presented, main properties (e.g. its statistical potential) are discussed and highlighted in comparison to deficiencies of existing approaches. Topographical reconstructions demonstrate the validity of the results with respect to the surface and the standard deviations of its heights.

Zusammenfassung

Die Rekonstruktionsaufgabe der Photogrammetrie gelöst durch Bündelausgleichung direkt mit Pixelbündeln . Die Rekonstruktionsaufgabe der Photogrammetrie wird gegenwärtig meist schrittweise gelöst mit einer merkmalsbasierten Bündellösung gefolgt von vielen dichten Bildzuordnungen plus Fusion zum Endresultat. Um die Leistungen der Rekonstruktion zum Maximum zu erhöhen, wird für sie eine andere Definition gegeben. Sie startet vom strengen Ansatz der digitalen Bildinversion und der Korrespondenzbedingung von Bildgrauwerten mit der unbekannten Funktion der Objekthelligkeit. Dies führt wieder zu einer Bündellösung (ähnlich der klassischen), jedoch direkt mit den Bildgrauwerten als Messwerten, so dass jedes Pixel einen Abbildungsstrahl repräsentiert und jedes Bild ein Strahlenbündel sehr hoher Dichte (Pixelbündel). Alle Bilder eines Blocks werden der Bedingung unterworfen, eine einzige Funktion der Objekthelligkeit optimal zu erzeugen gemeinsam mit der Objektoberfläche und der Orientierung der Bilder (WROBEL, Proceedings SPIE 804, pp 325–334. In German language: Bildmessung und Luftbildwesen 1987). Die Aufgaben des modernen Lebens benötigen Methoden für 3D Rekonstruktionen in sehr unterschiedlicher Leistung. Wir konzentrieren uns hier auf einen Ansatz in hoher Treue für das stochastische wie auch für das funktionale Modell der Bildauswertung. In diesem Beitrag werden die fundamentalen Ableitungen des Ansatzes aufgezeigt, die Haupteigenschaften (z.B. ihr hohes statistisches Potential) diskutiert und hervorgehoben im Vergleich zu Unzulänglichkeiten von existierenden Ansätzen. Topographische Rekonstruktionen demonstrieren die Gültigkeit der Ergebnisse gleichermaßen für die Oberfläche und die Standardabweichungen ihrer Höhen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The right-hand side of the mapping equation, a mix of homogeneous \((\mathbf K )\) and inhomogeneous terms \(({{\varvec{R}}}, {{\varvec{X}}}, {{\varvec{X}}}_o)\), can be numerically computed by taking the results of the bundle solution producing the homogeneous \(3\times 1\) vector \((\mathbf{v }_\mathbf x {+}{} \mathbf x ) {=} \mathbf x ^*\). This vector \((x^*w^*, y^*w^*, w^*)^T\) is simply decomposed into the elements of \(\mathbf x \) and \(\mathbf v _\mathbf x \): \((x^*w^*/w^*, y^*w^*/w^*)^T {=} (x^*, y^*)^T\), from which with the given measurement data x and y we finally obtain \((x^*{-}x, y^*-y)^T {=} (v_x, v_y)^T\).

  2. Lets have a look at the remarkable structure of the equations of an image (see (3) to (6)): each equation contains the six (in general non-zero) coefficients of the orientation parameters of that image (altogether a huge number of equations!). In the example of Table 1 we have only 64 equations with non-zero coefficients for an arbitrary S-facet. So, we can expect that the orientation parameters can be better estimated than the other parameters.

References

  • Atkinson KB (ed) (1996) Close range photogrammetry and machine vision. Whittles Publishing, Caithness

  • Beise M, Schäfer U (2016) Deutschland digital. Unsere Antwort auf das Silicon Valley. - Campus Verlag Frankfurt am, Main

  • Berger M, Tagliasacchi A, Seversky LM, Alliez P, Levine JA, Sharf A (2017) State of the art in surface reconstruction from point clouds. J Comput Graph Forum Arch 36(1):301–329

    Article  Google Scholar 

  • Bethmann F, Luhmann Th (2015) Multi-image semi-global matching in object space. Int Arch Photogram Remote Sens Spatial Inf Sci XL-3/W2:23–29

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Cavegn S, Nebiker S, Deuber M (2014) Dense image matching mit oblique Luftbildaufnahmen—Ein systematischer Vergleich verschiedener Lösungen mit RCD30 Oblique Penta. Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN, DGPF Tagungsband 23:10

  • Chen G, Zhu F, Heng AH (2015) An efficient statistical method for image noise level estimation. IEEE Int Conf Comput Vis (ICCV) 477–485

  • Conen N, Luhmann T, Maas HG (2017) Development and evaluation of a miniature trinocular camera system for surgical measurement applications. Photogrammetrie, Fernerkundung, Geoinformation Bd 85(2):127–138

  • Förstner W, Wrobel BP (2016) Photogrammetric computer vision—statistics, geometry. orientation and reconstruction. Springer, Cham

  • Goesele M, Curless B, Seitz SM (2006) Multi-view stereo revisited. Proceedings of the IEEE computer science conference on computer vision and pattern recognition, CVPR New York, pp 2402–2409

  • Grimm A, Grimm PH (2013) IGI history—present–future. In: Fritsch D (ed) The photogrammetric week 2013. Wichmann/VDE Verlag, Berlin & Offenbach, pp 23–36

  • Grün A (1985) Adaptive least squares correlation: a powerful image matching technique. South Afr J Photogram Remote Sens Cartogr 14(3):175–187

  • Grün A, Baltsavias M (1988) Geometrically constrained multiphoto matching. Photogram Eng Remote Sens 54(5):633–641

    Google Scholar 

  • Grün A (1996) Development of digital methodology and systems. Least squares matching: a fundamental measurement algorithm. Chapters 4 & 8. In: Atkinson KB (ed) Close range photogrammetry and machine vision. Whittles Publishing, Caithness

  • Haala N, Rothermel M (2012) Dense multi-stereo matching for high quality digital elevation models. Photogrammetrie, Fernerkundung, Geoinformation 4:331–344

  • Heipke C (1990) Integration von digitaler Bildzuordnung, Punktbestimmung, Oberflächenrekonstruktion und Orthoprojektion innerhalb der digitalen Photogrammetrie. Dissertation, Technische Universität München, Deutsche Geodätische Kommission C366

  • Hernández D, Cabrelles M, Felipe-García B, Lerma JL (2012) Calibration and direct geo referencing analysis of a multi-sensor system for cultural heritage recording. Photogrammetrie, Fernerkundung, Geoinformation 237–250

  • Hirschmüller H (2008) Stereo processing by semi-global matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341

    Article  Google Scholar 

  • Kempa M (1995) Hochaufgelöste Oberflächenbestimmung von Natursteinen und Orientierung von Bildern mit dem Facetten-Stereosehen. Dissertation, TH Darmstadt

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. \(2^{nd}\) edn. Springer Science & Business Media 1999, Springer, Berlin

  • Koch KR (2007) Introduction to Bayesian statistics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Kruck E, Wrobel BP (1982) Photogrammetrische Formkontrolle von Kühltürmen. - III. Intern. Symposium über Deformationsmessungen mit geodätischen Methoden, Budapest 25.-27.8.1982

  • Langguth F, Sunkavalli K, Hadap S, Goesele M (2016) Shading-aware Multi-view Stereo. In: Proceedings of the European conference on computer vision, Amsterdam, The Netherlands, Oct 8-16, ECCV 2016, pp 469–485

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Luhmann TH, Robson S, Keyle S, Boehm J (2014) Close-range photogrammetry and 3D imaging, 2nd edn. De Gruyter, Berlin

  • McGlone JC (ed) (2013) Manual of photogrammetry, 6th edn. American Society for Photogrammetry and Remote Sensing, Bethesda

  • O’Hagan A (1994) Bayesian inference. Kendal’s advanced theory of statistics, vol. 2B. Wiley, New York

  • Remondino F (2006) Image-based modelling for object and human reconstruction. Doctoral Thesis ETH No. 16562, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland

  • Ressl RC, Brockmann H, Mandlburger G, Pfeifer N (2016) Dense image matching vs. airborne laser scanning—comparison of two methods for deriving terrain models. Photogrammetrie Fernerkundung, Geoinformation 2:57–73

    Article  Google Scholar 

  • Rothermel M, Wenzel K, Fritsch D, Haala N (2012) SURE: photogrammetric surface reconstruction from imagery. LowCost3D Workshop, Berlin, December 2012

  • Rumpler M, Tscharf A, Mostegel C, Daftry S, Hoppe C, Prettenthaler R, Fraundorfer F, Mayer G, Bischof H (2017) Evaluations on multi-scale camera networks for precise and geo-accurate reconstructions from aerial and terrestrial images with user guidance. -. Comput Vis Image Underst 157:255–273

    Article  Google Scholar 

  • Schlüter M, Wrobel BP (1998) Das Dezimeter-DGM durch photogrammetrische Oberflächenrekonstruktion mit dem Facetten-Stereosehen. - Allgemeine Vermessungsnachrichten, 8–9, S.295-303

  • Schlüter M (1999) Von der 2,5D- zur 3D-Flächenmodellierung für die photogrammetrische Rekonstruktion im Objektraum. - Dissertation TU Darmstadt, Deutsche Geodätische Kommission, C (506), München

  • Schmid HH (1958) Eine allgemeine analytische Lösung für die Aufgabe der Photogrammetrie. Bildmessung und Luftbildwesen 1958, Heft 4 und 1959, Heft 1

  • Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2006, New York, NY, USA, pp 519–526

  • Semerjian B (2014) A new variational framework for multiview surface reconstruction. In: Fleet D, Pajdla B, Schiele T, Tuytelaars T (eds) ECCV 2014, part VI, 719-734, Springer, Cham (Switzerland)

  • Strecha Ch (2007) Multi-view stereo as an inverse inference problem. Dissertation Katholieke Universiteit Leuven, Belgium

  • Stüben K (2007) Solving reservoir simulation equations. In: 9th Internat. forum on reservoir simulation, December 9–13, 2007, Abu Dhabi, United Arab Emirates

  • Tai SC, Yang SM (2008) A fast method for image noise estimation using Laplacian operator and adaptive edge detection. In: IEEE-international symposium on communications, control and signal processing (ISCCSP 2008), Malta, pp 1077–1081

  • Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment—a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice. Vol. 1883 of Lecture notes in computer science. Proc. of the Internl. workshop on vision algorithms: theory and practice. Springer, pp 298–372

  • Tyleček R, Šára R (2010) Refinement of surface mesh for accurate multi-view reconstruction. Int J Virtual Reality 9(1):45–54

    Google Scholar 

  • Weisensee M (1992) Modelle und Algorithmen für das Facetten-Stereosehen. Dissertation TH Darmstadt, Deutsche Geodätische Kommission, C(374), München

  • Wendt A (2008) Objektraumbasierte simultane multisensorale Orientierung. Dissertation Universität Hannover, Deutsche Geodätische Kommission, C(613), München

  • Wrobel BP (1987) Digital image matching by facets using object space models. Int.. Symposion on Optical and Optoelectr. Science and Engineering, 30 March - 3 April, The Hague (NL) 1987. In: Osterlinck A, Tescher AG (eds) Advances in Image Processing. Proceedings SPIE 804, pp 325–334. In German language: Bildmessung und Luftbildwesen 55(3):93–101

  • Wrobel BP (1991) The evolution of digital photogrammetry from analytical photogrammetry. Photogram Record 13(77):765–776

    Article  Google Scholar 

  • Wrobel BP (2012) Kreismarken in perspektiver Abbildung—im Bild und im Bündelblock. Photogrammetrie, Fernerkundung, Geoinformation 2012(3) 3:221–236

Download references

Acknowledgements

I am grateful to Martin Schlüter and Johannes Schneider for preparation of the figures and Karl-Rudolf Koch for discussions about the statistical approach. Thanks also to Jochen Meidow and to the team of editors of this journal for hints to improve the clarity of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard P. Wrobel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrobel, B.P. The Photogrammetric Reconstruction Task Solved by Bundle Adjustment Directly with Pixel Bundles. PFG 85, 377–388 (2017). https://doi.org/10.1007/s41064-017-0037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-017-0037-9

Keywords

Navigation