Skip to main content
Log in

First-Principles Study of Structural, Electronic, Optical, and Thermal Properties of BeSiSb2 and MgSiSb2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural, electronic, optical, and thermal properties of ternary II–IV–V2 (BeSiSb2 and MgSiSb2) chalcopyrite semiconductors have been calculated using the full-potential linearized augmented plane wave scheme␣in the generalized gradient approximation. The optimized equilibrium structural parameters (a, c, and u) are in good agreement with theoretical results obtained using other methods. The band structure and density of states reveal that BeSiSb2 has an indirect (Γ–Z) bandgap of about 0.61 eV, whereas MgSiSb2 has a direct (Γ–Γ) bandgap of 0.80 eV. The dielectric function, refractive index, and extinction coefficient were calculated to investigate the optical properties, revealing that BeSiSb2 and MgSiSb2 present very weak birefringence. The temperature dependence of the volume, bulk modulus, Debye temperature, and heat capacities (C v and C p) was predicted using the quasiharmonic Debye model at different pressures. Significant differences in properties are observed at high pressure and high temperature. We predict that, at 300 K and 0 GPa, the heat capacity at constant volume C v, heat capacity at constant pressure C P, Debye temperature θ D, and Grüneisen parameter γ will be about 94.91 J/mol K, 98.52 J/mol K, 301.30 K, and 2.11 for BeSiSb2 and about 96.08 J/mol K, 100.47 J/mol K, 261.38 K, and 2.20 for MgSiSb2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.F. Levine, Phys. Rev. B 7, 2600 (1973).

    Article  Google Scholar 

  2. J.L. Shay, L.M. Schiavone, E. Buehier, and J.H. Wernick, Appl. Phys. Lett. 43, 2805 (1972).

    Google Scholar 

  3. S. Wagner, J.L. Shay, P. Migliorato, and H.M. Kasper, Appl. Phys. Lett. 25, 434 (1974).

    Article  Google Scholar 

  4. L.L. Kazmerski and Y. Juang, J. Vac. Sci. Technol. 14, 769 (1977).

    Article  Google Scholar 

  5. I.V. Fedorchenko, A.N. Aronov, L. Kilanski, V. Domukhovski, A. Reszka, B.J. Kowalski, E. Lahderanta, W. Dobrowolski, A.D. Izotov, and S.F. Marenkin, J. Alloys Compd. 599, 121 (2014).

    Article  Google Scholar 

  6. W.R.L. Lambrecht and X. Jiang. Phys. Rev. B 70, 045204 (2004).

    Article  Google Scholar 

  7. L. Wei, G.D. Zhang, W.L. Fan, Y.L. Li, L. Yang, and X. Zhao, J. Appl. Phys. 114, 233501 (2013).

    Article  Google Scholar 

  8. Z.W. Zhang, D.T. Reid, S.C. Kumar, M. Ebrahim-Zadeh, P.G. Schunemann, K.T. Zawilski, and C.R. Howle, Opt. Lett. 38, 5110 (2013).

    Article  Google Scholar 

  9. S. Sahin, Y.O. Ciftci, K. Colakoglu, and N. Korozlu, J. Alloys Compd. 529, 1 (2012).

    Article  Google Scholar 

  10. J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (New York: Pergamon, 1975).

    Google Scholar 

  11. W. Feng, D. Xiao, J. Ding, and Y. Yao, Phys. Rev. Lett. 106, 016402 (2011).

    Article  Google Scholar 

  12. V. Kumar, S.K. Tripathy, V. Jha, and B.P. Singh, Phys. Lett. A 378, 519 (2014).

    Article  Google Scholar 

  13. W.H. Bloss, F. Pfisterer, and H.W. Schock, Adv. Sol. Energy 4, 201 (1988).

    Article  Google Scholar 

  14. S.N. Rashkeev, S. Limpijumnong, and W.R.L. Lambrecht, Phys. Rev. B 59, 2737 (1999).

    Article  Google Scholar 

  15. L. Shi, J. Hu, Y. Qin, Y. Duan, L. Wu, X. Yang, and G. Tang, J. Alloys Compd. 611, 210 (2014).

    Article  Google Scholar 

  16. B. Kocak, Y.O. Ciftci, and G. Surucu, J. Electron. Mater. 46, 247 (2017).

    Article  Google Scholar 

  17. P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon, and K. Rajan, Comput. Mater. Sci. 83, 185 (2014).

    Article  Google Scholar 

  18. Z. Zhaochun, P. Ruiwu, and C. Nianyi, Mater. Sci. Eng. B 54, 149 (1998).

    Article  Google Scholar 

  19. A.V. Kopytov, A.S. Poplavnoi, and M.K. Ufimtsev, J. Struct. Chem. 54, 843 (2013).

    Article  Google Scholar 

  20. J.E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).

    Article  Google Scholar 

  21. D.D. Koelling and B.N. Harmon, J. Phys. C: Sol. Stat. Phys. 10, 3107 (1977).

    Article  Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  24. J.P. Perdew, K. Burke, and M. Ernzerlof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  26. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  27. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  28. M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  29. International Tables␣for Crystallography, vol. A, edited by Th. Hahn, 5e edition, 2005.

  30. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947).

    Article  Google Scholar 

  31. J.R. Macdonald and D.R. Powell, J. Res. Natl. Bur. Stand. A 75, 441 (1971).

    Article  Google Scholar 

  32. Wikipedia.org/wiki/Ionic_radius. Accessed 3 June 2017

  33. C. Kittel, Physique de l’état solide Cours et problèmes, 7eédition (Dunod, Paris, 1998).

  34. B. Amrani, H. Achour, S. Louhibi, A. Tebboune, and N. Sekkal, Solid State Commun. 148, 59 (2008).

    Article  Google Scholar 

  35. C. Suh and K. Rajan, Appl. Surf. Sci. 223, 148 (2004).

    Article  Google Scholar 

  36. J. Sun, H.T. Wang, N.B. Ming, J. He, and Y. Tian, Appl. Phys. Lett. 84, 4544 (2004).

    Article  Google Scholar 

  37. S. Saha and T.P. Sinha, Phys. Rev. B 62, 8828 (2000).

    Article  Google Scholar 

  38. M. Fox, Optical Properties of Solids (New York: Oxford University Press, 2001), p. 6.

    Google Scholar 

  39. S. Hufner, R. Claessen, F. Reinert, Th Straub, V.N. Strocov, P. Steiner, R. Ahuja, S. Auluck, B. Johansson, and M.A. Kan, Phys. Rev. B 50, 2128 (1994).

    Article  Google Scholar 

  40. H.Z. Tributsch, Naturforschung A 32A, 972 (1977).

    Google Scholar 

  41. A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Meradji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlamari, S., Boukhtouta, M., Taïri, L. et al. First-Principles Study of Structural, Electronic, Optical, and Thermal Properties of BeSiSb2 and MgSiSb2 . J. Electron. Mater. 47, 1904–1915 (2018). https://doi.org/10.1007/s11664-017-5985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5985-8

Keywords

Navigation