Skip to main content
Log in

Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, Microelectron. Eng. 111, 199 (2013).

    Article  Google Scholar 

  2. J. Kaur and S. Singhal, Ceram. Int. 40, 7417 (2014).

    Article  Google Scholar 

  3. Q.I. Rahman, M. Ahmad, S.K. Misra, and M.B. Lohani, Superlattices Microstruct. 64, 495 (2013).

    Article  Google Scholar 

  4. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Appl. Catal. B: Environ. 39, 75 (2002).

    Article  Google Scholar 

  5. I.K. Konstantinou and T.A. Albanis, Appl. Catal. B 49, 1 (2004).

    Article  Google Scholar 

  6. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A.Z. Moshfegh, Thin Solid Films 605, 2 (2016).

    Article  Google Scholar 

  7. T.T. Vu, L. del Río, T. Valdés-Solís, and G. Marbán, Mater. Res. Bull. 47, 1577 (2012).

    Article  Google Scholar 

  8. Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, and J. Chen, J. Hazard. Mater. 217, 100 (2012).

    Article  Google Scholar 

  9. W. Bai, K. Yu, Q. Zhang, X. Zhu, D. Peng, Z. Zhu, and Y. Sun, Physica E40, 822 (2008).

    Article  Google Scholar 

  10. T.J. Kuo, C.N. Lin, C.L. Kuo, and M.H. Huang, Chem. Mater. 19, 5143 (2007).

    Article  Google Scholar 

  11. D. Pradhan, F. Niroui, and K.T. Leung, ACS Appl Mater Interface 2, 2409 (2010).

    Article  Google Scholar 

  12. S. Baruah, C. Thanachayanont, and J. Dutta, Sci. Technol. Adv. Mater. 9, 025009 (2008).

    Article  Google Scholar 

  13. F.H. Ko, W.J. Lo, Y.C. Chang, J.Y. Guo, and C.M. Chen, Alloys Compd. 678, 137 (2016).

    Article  Google Scholar 

  14. F. Kayaci, C. Ozgit-Akgun, N. Biyikli, and T. Uyar, RSC Adv. 3, 6817 (2013).

    Article  Google Scholar 

  15. M.A. Susner, S.D. Carnevale, T.F. Kent, L.M. Gerber, P.J. Phillips, M.D. Sumption, and R.C. Myers, Physica E62, 95 (2014).

    Article  Google Scholar 

  16. T.T. Vu, L. del Río, T. Valdés-Solís, and G. Marbán, J. Hazard. Mater. 246, 126 (2013).

    Article  Google Scholar 

  17. X.Y. Xu, H.Z. Zhang, Q. Zhao, Y.F. Chen, J. Xu, and D.P. Yu, The. J. Phys. Chem. B09, 1699 (2005).

    Article  Google Scholar 

  18. O. Bechambi, W. Najjar, and S. Sayadi, Taiwan Inst. Chem. E.60, 496 (2016).

    Article  Google Scholar 

  19. J. Yuan, E.S.G. Choo, X. Tang, Y. Sheng, J. Ding, and J. Xue, Nanotechnology 21, 185606 (2010).

    Article  Google Scholar 

  20. N. Salah, A. Hameed, M. Aslam, M.S. Abdel-Wahab, S.S. Babkair, and F.S. Bahabri, Chem. Eng. J.291, 115 (2016).

    Article  Google Scholar 

  21. H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, and H. Hadiyanto, Int. J. Chem. Eng. 2016 (2016). https://dx.doi.org/10.1155/2016/6195326.

  22. M.H. Hsu and C.J. Chang, J. Hazard. Mater. 278, 444 (2014).

    Article  Google Scholar 

  23. H. Dai, Y. Zhou, Q. Liu, Z. Li, C. Bao, T. Yu, and Z. Zhou, Nanoscale 4, 5454 (2012).

    Article  Google Scholar 

  24. W.X. Jing, Y.Y. Cheng, W.Z. Gao, Z.D. Jiang, K. Jiang, J.F. Shi, and F. Zhou, Mater. Res. Bull. 86, 313 (2016).

    Article  Google Scholar 

  25. W.X. Jing, J.F. Shi, Z.P. Xu, Z.D. Jiang, Z.Y. Wei, F. Zhou, and W.Z. Gao, Appl. Phys. A 123, 513 (2017).

    Article  Google Scholar 

  26. S. Mohammadzadeh, M.E. Olya, A.M. Arabi, A. Shariati, and M.K. Nikou, J. Environ. Sci. 35, 194 (2015).

    Article  Google Scholar 

  27. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, and P. Praserthdam, Appl. Catal. B.63, 305 (2006).

    Article  Google Scholar 

  28. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2016).

    Article  Google Scholar 

  29. M.J. Zheng, L.D. Zhang, G.H. Li, and W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002).

    Article  Google Scholar 

  30. A.J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.H. Wu, C. Shannon, and W. Lee, Appl. Phys. Lett. 92, 092113 (2008).

    Article  Google Scholar 

  31. A. Umar, H.W. Ra, J.P. Jeong, E.K. Suh, and Y.B. Hahn, Korean J. Chem. Eng. 23, 499 (2006).

    Article  Google Scholar 

  32. W. Lu, G. Liu, S. Gao, S. Xing, and J. Wang, Nanotechnology 19, 445711 (2008).

    Article  Google Scholar 

  33. A.N. Gruzintsev, V.T. Volkov, and E.E. Yakimov, Semiconductor 37, 259 (2003).

    Article  Google Scholar 

  34. W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, and Y. Zhang, J. Hazard. Mater. 152, 172 (2008).

    Article  Google Scholar 

  35. M. Liu, S.W. Qu, W.W. Yu, S.Y. Bao, C.Y. Ma, Q.Y. Zhang, and C.L. Chen, Appl. Phys. Lett. 97, 231906 (2010).

    Article  Google Scholar 

  36. H. Li, M. Zheng, L. Ma, C. Zhu, and S. Lu, Mater. Res. Bull. 48, 25 (2013).

    Article  Google Scholar 

  37. J.H. Zeng, B.B. Jin, and Y.F. Wang, Chem. Phys. Lett. 472, 90 (2009).

    Article  Google Scholar 

  38. O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, Appl. Surf. Sci. 347, 414 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. X. Jing.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, W.X., Shi, J.F., Xu, Z.P. et al. Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity. J. Electron. Mater. 47, 1847–1858 (2018). https://doi.org/10.1007/s11664-017-5972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5972-0

Keywords

Navigation