Skip to main content

Advertisement

Log in

Thermomechanical Properties of Polypropylene-Based Lightweight Composites Modeled on the Mesoscale

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A waste-based particle polymer composite (WPPCs) made of foam glass and polypropylene was developed as a low-cost construction material. Thermomechanical properties of the composite, including creep properties of WPPC and polypropylene binder, were examined. By adding a relatively small amount of polypropylene to foam glass (about 2:8 in volume parts), the maximum bearing capacity at room temperature of the composite increased from 1.9 (pure foam glass) to 15 MPa. A significant creep strain accumulated during compressive loading of WPPC (5 MPa) in the first 2000 s at elevated temperatures (40, 60 °C). In the study, Kafka’s mesomechanical model was used to simulate creep strain changes in time for various temperatures. The applicability of Kafka’s mesomechanical model for simulating creep properties of the studied composite material was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

σ ij :

Stress tensor

δ ij σ :

Isotropic part of σ ij (σ = σ ii /3)

s ij :

Deviatoric part of σ ij (s ij  = σ ij  − δ ij σ)

ε ij :

Strain tensor

δ ij ε :

Isotropic part of ε ij (ε = ε ii /3)

e ij :

Deviatoric part of ε ij (e ij  = ɛ ij  − δ ij ɛ)

δ ij :

Kronecker’s delta

E :

Young’s modulus

ν :

Poisson’s ratio

μ = (1 + ν)/E :

Deviatoric elastic compliance

ρ = (1 − 2ν)/E :

Isotropic elastic compliance

\({\bar{|}}\) :

Over-bar that relates symbol | to the composite—average in a representative volume element of the composite

r :

Index relating the symbol to the resistent PP

c :

Index relating the symbol to the compliant FG

e :

Index relating the symbol to the elastic constituent of the PP

n :

Index relating the symbol to the inelastic constituent of the PP

ν r {ν c }:

Volume fraction of the resistant PP {of the compliant FG} in the composite. In part 3, ν r {ν c } are denoted as VPP {VFG}

ν e {ν n }:

Volume fraction of the elastic {inelastic} constituent in PP

ε ij ′:

ε ij \(\bar{\varepsilon }_{ij}\)

δ ij ε′:

Isotropic part of ε ij

e ij ′:

Deviatoric part of ε ij

σ ij ′:

Stress related to ε ij ′ similarly as is σ ij related to ε ij

δ ij σ′ :

Isotropic part of σ ij

s ij ′:

Deviatoric part of σ ij

η e, η n :

Structural parameters of PP

\(\dot{h}^{n}\) :

Formal variable that equals 0 in elasticity, \(\dot{\lambda }^{n}\) in plasticity, and 1/(2H n) in creep

H n :

Coefficient of viscosity of the n-constituent in PP

λ n :

Scalar measure of plastic deformation in the PP binder

c n :

Deviatoric yield limit of the PP binder

The dot above any symbol means time derivative

References

  1. M. Alhozaimy, P. Soroushian, and F. Mirza, Mechanical Properties of Polypropylene Fiber Reinforced Concrete and the Effects of Pozzolanic Materials, Cem. Concr. Compos., 1996, 18, p 85–92

    Article  Google Scholar 

  2. Y. Cai, B. Shi, C.W.W. Ng, and C.S. Tang, Effect of Polypropylene Fibre and Lime Admixture on Engineering Properties of Clayey Soil, Eng. Geol., 2006, 87, p 230–240

    Article  Google Scholar 

  3. S. Tapkin, The Effect of Polypropylene Fibers on Asphalt Performance, Build. Environ., 2008, 43, p 1065–1071

    Article  Google Scholar 

  4. M.S. Yildirim, Y. Bicer, and C. Yildiz, Utilization of Fly Ash and Polypropylene Wastes in the Production of a New Porous Composite Material, J. Porous Mater., 1996, 3, p 189–191

    Article  Google Scholar 

  5. C. Maier and T. Calafut, Polypropylene: The Definitive User’s Guide and Databook, William Andrew, New York, 1998

    Google Scholar 

  6. A. Van der Wal, J.J. Mulder, and R.J. Gaymans, Fracture of Polypropylene: The Effect of Crystallinity, Polymer, 1998, 39, p 5477–5481

    Article  Google Scholar 

  7. L. Matějka, J. Pěnčík, Thermal Insulation Composite Polymer, Czech patent no. 302851 (2011)

  8. W.N. Ota, S. Amico, and K.G. Satyanarayana, Studies on the Combined Effect of Injection Temperature and Fiber Content on the Properties of Polypropylene-Glass Fiber Composites, Compos. Sci. Technol., 2005, 65, p 873–881

    Article  Google Scholar 

  9. B. Chen, Z. Luo, and A. Lu, Preparation of Sintered Foam Glass with High Fly Ash Content, Mater. Lett., 2011, 65, p 3555–3558

    Article  Google Scholar 

  10. J. Bai, X. Yang, S. Xu, W. Jing, and J. Yang, Preparation of Foam Glass from Waste Glass and Fly Ash, Mater. Lett., 2014, 136, p 52–54

    Article  Google Scholar 

  11. M. Chen, F. Zhang, and J. Zhu, Lead Recovery and the Feasibility of Foam Glass Production from Funnel Glass of Dismantled Cathode Ray Tube Through Pyrovacuum Process, J. Hazard. Mater., 2009, 161, p 1109–1113

    Article  Google Scholar 

  12. F. Mear, P. Yot, M. Cambon, and M. Ribes, The Characterization of Waste Cathode-Ray Tube Glass, Waste Manag., 2006, 26, p 1468–1476

    Article  Google Scholar 

  13. D.W. Scott, J.S. Lai, and A.H. Zureick, Creep Behavior of Fiber-Reinforced Polymeric Composites: A Review of the Technical Literature, J. Reinf. Plast. Compos., 1995, 14, p 588–617

    Article  Google Scholar 

  14. M. Kitagawa and T. Matsutani, Effect of Time and Temperature on Nonlinear Constitutive Equation in Polypropylene, J. Mater. Sci., 1988, 23, p 4085–4090

    Article  Google Scholar 

  15. M. Jerabek, D. Tscharnuter, Z. Major, K. Ravi-Chandar, and R.W. Lang, Relaxation Behavior of Neat and Particulate Filled Polypropylene in Uniaxial and Multiaxial Compression, Mech. Time Depend. Mater., 2010, 14, p 47–68

    Article  Google Scholar 

  16. T. Pospíšil, J. Pěnčík, L. Matějka, L. Matějka, A. Kalužová, and D. Dostálová, Elimination of Thermal Bridge by Thermal Insulation Composite Material, Adv. Mater. Res., 2012, 482–484, p 1654–1659

    Article  Google Scholar 

  17. J. Pěnčík, L. Matějka, A. Kalužová, L. Matějka, D. Dostálová, and T. Pospíšil, Development of Thermal Insulation Composite Material from Recycled Polymer and Recycled Glass, Adv. Mater. Res., 2012, 487, p 701–705

    Article  Google Scholar 

  18. V. Kafka, Inelastic Mesomechanics, Vol 5, World Scientific, Singapore, 1988

    Book  Google Scholar 

  19. V. Kafka, Mesomechanical Constitutive Modeling, Vol 55, World Scientific, Singapore, 2001

    Google Scholar 

Download references

Acknowledgments

D.V. would like to thank for support of the work by the Czech Science Foundation via project 14-36566G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darina Dostálová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dostálová, D., Kafka, V., Vokoun, D. et al. Thermomechanical Properties of Polypropylene-Based Lightweight Composites Modeled on the Mesoscale. J. of Materi Eng and Perform 26, 5166–5172 (2017). https://doi.org/10.1007/s11665-017-2967-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2967-1

Keywords

Navigation