Skip to main content
Log in

Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Fish use their mechanosensory lateral line amongst others for the detection of vortices shed by an upstream object and/or for the detection of vortices caused by the tail fin movements of another fish. Thus, vortices are one type of hydrodynamic stimuli to which fish are exposed in their natural environment. We investigated the responses of medullary lateral line units of common rudd, Scardinius erythrophthalmus, and common nase, Chondrostoma nasus (Cyprinidae), to water flow (9.5–13.3 cm−1) that contained vortices (a Kármán vortex street) shed by an upstream cylinder (diameter 2 cm). The distance between the cylinder and the tip of the fish’s snout varied between 8 and 24 cm. 21 out of 42 units (S. erythrophthalmus), respectively, 9 out of 39 units (Chondrostoma nasus) responded to the vortices shed by the cylinder. Up to a cylinder distance of 24 cm, interburst intervals revealed the vortex shedding frequency, i.e., burst frequency was similar to or identical with the vortex shedding frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CN:

Canal neuromast

MON:

Medial octavolateralis nucleus

Pdf:

Probability density function

PIV:

Particle image velocimetry

RF:

Receptive field

SN:

Superficial neuromast

VSF:

Vortex shedding frequency

VSD:

Vortex shedding delay

References

  • Beckmann M, Erős T, Schmitz A, Bleckmann H (2010) Number and distribution of superficial neuromasts in twelve common european cypriniform fishes and their relationship to habitat occurrence. Int Rev Hydrobiol 95:273–284

    Article  Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 619–641

    Chapter  Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    Article  CAS  Google Scholar 

  • Bleckmann H, Mogdans J (2014) Neuronal basis of source localization and the processing of bulk water flow with the lateral line. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Behavioral, neural and engineering principles of operation. Springer, Berlin, pp 371–398

    Chapter  Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128

    Article  Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    Article  CAS  PubMed  Google Scholar 

  • Breder CM (1965) Vortices and fish schools. Zoologica 50:97–114

    Google Scholar 

  • Burt de Perera T (2004) Fish can encode order in their spatial map. Proc R Soc B Biol Sci 271:2131–2134

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann MH (2007a) Kármán vortex street detection by the lateral line. J Comp Physiol A 193:753–763

    Article  Google Scholar 

  • Chagnaud BP, Hofmann MH, Mogdans J (2007b) Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193:249–263

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann MH (2008a) Lateral line nerve fibers do not code bulk water flow direction in turbulent flow. Zoology 111:204–217

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008b) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb J (1988) Diversity of lateral line Systems: Evolutionary and Functional considerations. In: Atema J, Fay R, Popper A, Tavolga W (eds) Sensory biology of aquatic anmals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Hanke W, Wieskotten S, Krüger Y, Miersch L (2014) Hydrodynamic perception in seals and sea lions. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water behavioral, neural and engineering principles of operation. Spinger, Berlin, pp 147–167

    Chapter  Google Scholar 

  • Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118:22–24

    Article  CAS  PubMed  Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zool 107:135 – 51

    Article  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    Article  CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    Article  CAS  Google Scholar 

  • Engelmann J, Kröther S, Bleckmann H, Mogdans J (2003) Effects of running water on lateral line responses to moving objects. Brain Behav Evol 61:195–212

    Article  PubMed  Google Scholar 

  • Faucher K, Parmentier E, Becco C, Vandewalle N, Vandevalle P (2010) Fish lateral system is required for accurate control of shoaling behaviour. Anim Behav 79:679–687

    Article  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, pp 217–228

    Chapter  Google Scholar 

  • Klein A, Bleckmann H (2011) Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein J Nanotechnol 2:276–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein A, Winkelnkemper J, Dylda E, Bleckmann H (2015) Medullary lateral line units of rudd, Scardinius erythrophthalmus, are sensitive to Kármán vortex streets. J Comp Physiol A 201:691–703

    Article  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Steven Simpson Books, Switzerland

    Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc Lond B Biol Sci 362:1973–1993

    Article  Google Scholar 

  • Liao JC (2014) Functional architecture of lateral line afferent neurons in larval zebrafish. In: Bleckmann H, Mogdans J, Coombs S (eds) Flow sensing in air and water. Behavioral, neural and engineering principles of operation. Springer, Berlin, pp 318–334

    Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    Article  PubMed  Google Scholar 

  • Magirl CS, Gartner JW, Smart GM, Webb RH (2009) Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah. Water Resour Res 45:1–17

    Article  Google Scholar 

  • McHenry MJ, Feitl KE, Strother JA, Van Trump WJ (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 5:477–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogdans J, Geisen S (2009) Responses of the goldfish head lateral line to moving objects. J Comp Physiol A 195:151–165

    Article  Google Scholar 

  • Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50:261–283

    Article  CAS  PubMed  Google Scholar 

  • Mohr C, Bleckmann H (1998) Electrophysiology of the cephalic lateral line of the surface-feeding fish Aplocheilus lineatus. Comp Biochem Physiol 119A:807–815

    Article  CAS  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey. Science 235:195–196

    Article  CAS  PubMed  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • New JG (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C (2010) Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976–2986

    Article  PubMed  Google Scholar 

  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 168:417–428

    Article  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn-Schmiedeberg‘s Arch Pharmacol 297:9–16

    Article  Google Scholar 

  • Stewart FJ, Tian F, Akanyeti O, Walker CJ, Liao JC (2016) Refuging rainbow trout selectively exploit flows behind tandem cylinders. J Exp Biol 219:2182–2191

    Article  PubMed  Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203:2495–2502

    CAS  PubMed  Google Scholar 

  • Webb J (2014) Morphological diversity, development, and evolution of the mechanosensory lateral line system. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, pp 17–72

    Google Scholar 

  • Wullimann M, Grothe B (2014) The central nervous organization of the lateral line system. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, pp 195–252

    Google Scholar 

Download references

Acknowledgements

We thank Joachim Mogdans for reading and commenting on an earlier version of the manuscript. The authors acknowledge the financial support provided by the DFG (GRK 1572) and the BMBF. The research reported herein was performed under the guidelines established by the current German animal protection law (Landesamt für Natur, Umwelt und Verbraucherschutz NRW, 87-51.04.2010. A013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Bleckmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkelnkemper, J., Kranz, S. & Bleckmann, H. Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets. J Comp Physiol A 204, 155–166 (2018). https://doi.org/10.1007/s00359-017-1217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1217-1

Keywords

Navigation