Skip to main content
Log in

A high-capacity cathode based on silicates material for advanced lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silicate materials have been proposed as alternative cathodes for Li-ion battery applications. A novel mixture of silicates, labelled Li6MnSi5, based on the molar ratio among the Li/Mn/Si precursors, with promising electrochemical properties as positive electrode material is synthesized through a solid-state reaction. The results indicate the proposed synthetic method as effective for preparation of nanostructured silicate powders with average particle diameter of 30 nm. Structural morphology of the samples was determined using X-ray powder diffraction (XRPD), XPS and FESEM analysis. A joint analysis by XRPD data and by density functional theory (DFT) identified LiHMn4Si5O15, Li2Mn4Si5O15, Li2Si2O5 and Li0.125Mn0.875SiO4 as components of Li6MnSi5 mixture. The electrochemical performance of Li6MnSi5 was evaluated by charge/discharge testing at constant current mode. Li6MnSi5 discharge behaviour is characterized by high capacity value of 480 mA h g−1, although such capacity fades gradually on cycling. Ex situ XPS studies carried out on the electrode in both full charged and discharged states pointed out that Li2Si2O5 is decisive for achieving such high capacity. The discharge/charge plateau is most probably related to the change in the oxidation state of silicon at the surface of the silica material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fisher CAJ, Kuganathan N, Islam MS (2013) J Mater Chem A 1:4207–4214

    Article  CAS  Google Scholar 

  2. Ferrari S, Capsoni D, Casino S, Destro M, Gerbaldi G, Bini M (2014) Phys Chem Chem Phys 16:10353–10366

    Article  CAS  Google Scholar 

  3. Wang Y-C, Zhao S-X, Zhai P-Y, Li F, Nan C-W (2014a) J Alloys and Compounds 614:271–276

    Article  CAS  Google Scholar 

  4. Bini M, Ferrari S, Capsoni D, Spreafico C, Tealdi C, Mustarelli P (2013) J Solid State Chemistry 200:70–75

    Article  CAS  Google Scholar 

  5. Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L (2015) Carbon 92:15–25

    Article  CAS  Google Scholar 

  6. Muraliganth T, Stroukoff KR, Manthiram A (2010) Chem Mater 22(20):5754–5761

    Article  CAS  Google Scholar 

  7. Dominko R (2008) J Power Sources 184:462–468

    Article  CAS  Google Scholar 

  8. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Nano Lett 12:1146–1151

    Article  CAS  Google Scholar 

  9. Dominko R, Bele M, Gaberšček M, Meden A, Remškar M, Jamnik J (2008) Electrochem Commun 8:217–222

    Article  Google Scholar 

  10. Zhang S, Deng C, Liu FL, Wu Q, Zhang M, Meng FL, Gao H (2013) J Electroanal Chem 689:88–95

    Article  CAS  Google Scholar 

  11. Liu S, Xu J, Li D, Hu Y, Liu X, Xie K (2013) J Power Sources 232:258–263

    Article  CAS  Google Scholar 

  12. Devaraj S, Kuezma M, Ng CT, Balaya P (2013) Electrochim Acta 102:290–298

    Article  CAS  Google Scholar 

  13. Wagner N, Svensson A-M, Vullum-Bruer F (2015) Solid State Ionics 276:26–32

    Article  CAS  Google Scholar 

  14. Wagner NP, Vullum PE, Nord MK, Svensson AM, Vullum-Bruer F (2016) J Phys Chem C 120:11359–11371

    Article  CAS  Google Scholar 

  15. Świętosławski M, Molenda M, Gajewska M (2016) Functional Materials Letter 9:1641003–1641007

    Article  Google Scholar 

  16. He G, Manthiram A (2014) Adv Funct Mater 24:5277–5283

    Article  CAS  Google Scholar 

  17. Eames C, Armstrong AR, Bruce PG, Islam MS (2012) Chem Mater 24:2155–2161

    Article  CAS  Google Scholar 

  18. Li Y-X, Gong Z-L, Yang Y (2007) J Power Sources 174:528–532

    Article  CAS  Google Scholar 

  19. Saracibar A, Wang Z, Carroll KJ, Meng YS, Arroyo-de Dompablo ME (2015) J Mater Chem a 3:6004–6011

    Article  CAS  Google Scholar 

  20. Zhang S, Li Y, Xu G, Li S, Lu Y, Toprakci O, Zhang X (2012) J Power Sources 213:10–15

    Article  CAS  Google Scholar 

  21. Saiful Islam M, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG (2011) J Mater Chem 21:9811–9818

    Article  Google Scholar 

  22. Ramar V, Balaya P (2016) J Power Sources 306:552–558

    Article  CAS  Google Scholar 

  23. Wang H, Hou T, Sun D, Huang X, He H, Tang Y, Liu Y (2014b) J Power Sources 247:497–502

    Article  CAS  Google Scholar 

  24. Altomare A, Corriero N, Cuocci C, Falcicchio A, Moliterni A, Rizzi R (2015) J Appl Crystallogr 48:598–603

    Article  CAS  Google Scholar 

  25. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Doll K, Harrison NM, Civalleri B, Bush I (2014) J CRYSTAL14 User’s manual. Università di Torino, Torino

    Google Scholar 

  26. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  28. Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Mater Chem 21:2470–2475

    Article  CAS  Google Scholar 

  29. Liu W, Xu Y, Yang R (2009) J Alloys and Compounds 480:L1–L4

    Article  CAS  Google Scholar 

  30. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156–160

    Article  Google Scholar 

  31. Escande V, Petit E, Garoux L, Boulanger C, Grison C (2015) ACS Sustain Chem Eng 3:2704–2715

    Article  CAS  Google Scholar 

  32. Grosvenor AP, Bellhouse EM, Korinek A, Bugnet M, McDermid JR (2016) Appl Surf Sci 379:242–248

    Article  CAS  Google Scholar 

  33. Fabrizioli P, Burgi T, Baiker A (2002) J Catalysis 207:88–100

    Article  CAS  Google Scholar 

  34. Sharma P, Lazar A, Singh PA (2012) Applied Catal A: General 439-440:101–110

    Article  CAS  Google Scholar 

  35. Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN (2016) Appl Surf Sci 376:475–485

    Article  Google Scholar 

  36. Takei H (1976) J Crystal Growth 34:125–131

    Article  CAS  Google Scholar 

  37. Ryabov D (2011) Phys Chem Minerals 38:177–184

    Article  CAS  Google Scholar 

  38. Świętosławski M, Molenda M, Furczoń K, Dziembaj R (2013) J Power Sources 244:510–514

    Article  Google Scholar 

  39. Kuezma M, Devaraj S, Balay P (2012) J Mater Chem 22:21279–21284

    Article  CAS  Google Scholar 

  40. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Scientific Reports 3:1568

    Article  Google Scholar 

  41. Kibel M, Leech P (1996) Surf Interface Anal 24:605–610

    Article  CAS  Google Scholar 

  42. Rueda F, Mendialdua J, Rodriguez A, Casanova R, Barbaux Y, Gengembre L, Jalowiecki L (1996) J Electron Spectrosc Relat Phenom 82:135–143

    Article  CAS  Google Scholar 

  43. Dang T, Chau C (1996) J Electrochem Soc 143:302–305

    Article  CAS  Google Scholar 

  44. Aarnik W, Weishaupt A, Van Silfhout A (1990) Appl Surf Sci 45:37–48

    Article  Google Scholar 

  45. Alfonsetti R, Lozzi L, Passacantando M, Picozzi P, Santucci S (1993) Appl Surf Sci 70/71:222–225

    Article  Google Scholar 

  46. Alfonsetti R, De Simone G, Lozzi L, Passacantando M, Picozzi P, Santucci S (1994) Surf Interf Anal 22:89–92

    Article  CAS  Google Scholar 

  47. Nakazawa M, Kawase S, Sekiyama H (1989a) J Appl Phys 65:4014–4018

    Article  CAS  Google Scholar 

  48. ICDD (2003) The powder diffraction file. International Center for Diffraction Data, Pennsylvania, pp 19073–13273

    Google Scholar 

  49. Nakazawa M, Nishioka Y, Sekiyama H, Kawase S (1989b) J Appl Phys 65:4019–4023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by European Union Seventh Framework Programme FP7 GC.NMP.2013-1 2013-2017 MARS EV-GA 609201. The authors sincerely thank Mr. Mauro Raimondo for the FESEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bodoardo.

Electronic supplementary material

ESM 1

(DOCX 481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vankova, S., Versaci, D., Amici, J. et al. A high-capacity cathode based on silicates material for advanced lithium batteries. J Solid State Electrochem 21, 3381–3388 (2017). https://doi.org/10.1007/s10008-017-3663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3663-7

Keywords

Navigation