Skip to main content
Log in

Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Regional seismic damage prediction is an important approach to discover the weakness of a city so as to effectively mitigate seismic losses. A major proportion of regional seismic losses is caused by masonry buildings. As a result, an accurate prediction of the regional seismic damage to masonry buildings has significant engineering and scientific values. Various parameters of the computational models for regional seismic damage predictions usually involve considerable uncertainty, especially for masonry buildings. Therefore, a parametric sensitivity analysis for the regional seismic damage prediction of reinforced masonry buildings is performed in some detail in this study. Damage to this kind of buildings is predicted through nonlinear time-history analysis using the multiple-degree-of-freedom shear model, which can better represent the features of different buildings and ground motions. In the sensitivity analysis, two widely used methods, the first-order second-moment (FOSM) method and the Monte Carlo method, are adopted and their prediction results are compared. The outcomes of this study indicate that the uncertainty of parameters has a small influence on the analysis results when the total number of regional buildings is large. However the uncertainty cannot be neglected for individual building analysis. In addition, the FOSM method, which is more time-saving, can achieve a similar level of prediction as the Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • American Society of Civil Engineers (ASCE) (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7-10, Reston

    Google Scholar 

  • Anderson TW (1984) Multivariate statistical analysis. Wiley, New York

    Google Scholar 

  • Atamturktur S, Hemez FM, Laman JA (2012) Uncertainty quantification in model verification and validation as applied to large scale historic masonry monuments. Eng Struct 43:221–234

    Article  Google Scholar 

  • ATC (1985) Earthquake damage evaluation data for California (ATC-13). Applied Technology Council, Redwood

    Google Scholar 

  • Bayraktar A, Altunışık AC, Muvafık M (2016) Field investigation of the performance of masonry buildings during the October 23 and November 9, 2011, Van earthquakes in Turkey. J Perform Constr Facil 30(2):04014209

    Article  Google Scholar 

  • D’ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T, Crowley H, Silva V (2014) Guidelines for analytical vulnerability assessment of low/mid-rise buildings: methodology. Vulnerability global component Project

  • Del Gaudio C, Ricci P, Verderame GM, Manfredi G (2016) Observed and predicted earthquake damage scenarios: the case study of Pettino (L’Aquila) after the 6th April 2009 event. Bull Earthq Eng 14:2643–2678

    Article  Google Scholar 

  • Fang L (2009) Experimental research on seismic shear strength and seismic behavior of autoclaved fly ash brick wall. Dissertation, Changsha University of Science and Technology, Changsha, China (in Chinese)

  • Fellin W, King J, Kirsch A, Oberguggenberger M (2010) Uncertainty modelling and sensitivity analysis of tunnel face stability. Struct Saf 32(6):402–410

    Article  Google Scholar 

  • FEMA (2009) Quantification of building seismic performance factors (FEMA P695). Federal Emergency Management Agency, Washington

    Google Scholar 

  • FEMA (2012a) Multi-hazard loss estimation methodology: earthquake model (HAZUS-MH 2.1 technical manual). Federal Emergency Management Agency, Washington

    Google Scholar 

  • FEMA (2012b) Seismic performance assessment of buildings. Volume 1 methodology (FEMA-P58). Federal Emergency Management Agency, Washington

    Google Scholar 

  • Galasso C, Maddaloni G, Cosenza E (2014) Uncertainly analysis of flexural overstrength for capacity design of RC beams. J Struct Eng 140(7):04014037

    Article  Google Scholar 

  • Galasso C, Stillmaker K, Eltit C, Kanvinde A (2015) Probabilistic demand and fragility assessment of welded column splices in steel moment frames. Earthq Eng Struct Dyn 44(11):1823–1840

    Article  Google Scholar 

  • Gong YN (2008) Experimental research on the seismic performance of concrete perforated brick shear wall. Dissertation, School of Civil Engineering, Zhengzhou University, Zhengzhou, China (in Chinese)

  • Gu XL, Chen GL, Ma JY, Li X (2010) Experimental study on mechanical behavior of concrete perforated brick walls under cyclic loading. J Build Struct 31(12):123–131 (in Chinese)

    Google Scholar 

  • Guo ZG, Wu CW, Sun WM, Ni TY (2014) Seismic behavior of recycled concrete perforated brick masonry. J Basic Sci Eng 22(3):539–547 (in Chinese)

    Google Scholar 

  • Han C (2009) Experimental research on the behavior of brick masonry column and the seismic behavior of autoclaved fly ash brick. Dissertation, Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China (in Chinese)

  • Hao T, Liu LX, Wang RY (2008) Experimental study on the seismic performance of concrete perforated brick walls. Build Block Block Build 4:22–25 (in Chinese)

    Google Scholar 

  • Haselton CB, Liel AB, Taylor-Lange S, Deierlein GG (2008) Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Engineering Research Center (PEER Report 2007/03), University of California, Berkeley

  • He XQ (2008) Multivariate statistical analysis, 2nd edn. China Renmin University Press, Beijing (in Chinese)

    Google Scholar 

  • He CR, Zhang R, Chen Q, Han SL (2011) Earthquake characteristics and building damage in high-intensity areas of Wenchuan earthquake I: Yingxiu town. Nat Hazards 57(2):435–451

    Article  Google Scholar 

  • Homma S, Fujita K, Ichimura T, Hori M, Citak S, Hori T (2014) A physics-based Monte Carlo earthquake disaster simulation accounting for uncertainty in building structure parameters. Proc Comput Sci 29:855–865

    Article  Google Scholar 

  • Hori M (2006) Introduction to computational earthquake engineering. Imperial College Press, London

    Book  Google Scholar 

  • Hori M, Ichimura T (2008) Current state of integrated earthquake simulation for earthquake hazard and disaster. J Seismolog 12(2):307–321

    Article  Google Scholar 

  • Huang WW (2006) Seismic test of small-sized concrete block masonry walls. Cities Towns Constr Guangxi 1:69–71 (in Chinese)

    Google Scholar 

  • Ibarra LF, Krawinkler H (2004) Global collapse of deteriorating MDOF systems. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada

  • Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511

    Article  Google Scholar 

  • Jiang HJ, Fu B, Liu L, Yin XW (2014) Study on seismic performance of a super-tall steel-concrete hybrid structure. Struct Des Tall Spec Build 23(5):334–349

    Article  Google Scholar 

  • Kalpić D, Hlupić N (2011) Multivariate normal distributions. International encyclopedia of statistical science. Springer, Berlin, pp 907–910

    Book  Google Scholar 

  • Kircher CA, Reitherman RK, Whitman RV, Arnold C (1997) Estimation of earthquake losses to buildings. Earthq Spectra 13(4):703–720

    Article  Google Scholar 

  • Lee TH, Mosalam KM (2005) Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method. Earthq Eng Struct Dyn 34(14):1719–1736

    Article  Google Scholar 

  • Liel AB, Haselton CB, Deierlein GG, Baker JW (2009) Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct Saf 31(2):197–211

    Article  Google Scholar 

  • Lin XC, Zhang HY, Chen HF, Lin JQ (2015) Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake. Earthq Eng Eng Vib 14(1):169–176

    Article  Google Scholar 

  • Liu XH, Zhang HX, Liu JW, Liu LQ (1981) A Study of Aseismic characteristics of masonry building with reinforced concrete tie-columns. J Build Struct 6:47–55 (in Chinese)

    Google Scholar 

  • Liu Y, Xu YF, Zhang H (2011) Experimental study on mechanical behavior of fly ash block walls restricted by constructional columns and top beam. Ind Constr 41(8):38–41 (in Chinese)

    Google Scholar 

  • Lu XZ, Guan H (2017) Earthquake disaster simulation of civil infrastructures: from tall buildings to urban areas. Springer, Singapore

    Book  Google Scholar 

  • Lu X, Lu XZ, Guan H, Ye LP (2013a) Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthq Eng Struct Dyn 42(5):705–723

    Article  Google Scholar 

  • Lu XZ, Lu X, Guan H, Zhang WK, Ye LP (2013b) Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. J Constr Steel Res 82:59–71

    Article  Google Scholar 

  • Lu XZ, Han B, Hori M, Xiong C, Xu Z (2014) A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing. Adv Eng Softw 70:90–103

    Article  Google Scholar 

  • Lu XZ, Xie LL, Guan H, Huang YL, Lu X (2015a) A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elem Anal Des 98:14–25

    Article  Google Scholar 

  • Lu XZ, Chen L, Zeng X, Lu WQ (2015b) Numerical simulation for seismic responses of engineering structures based on cloud computing. J Shenyang Jianzhu Univ (Nat Sci) 31(5):769–777 (in Chinese)

    Google Scholar 

  • Lu X, Lu XZ, Guan H, Xie LL (2016) Application of earthquake-induced collapse analysis in design optimization of a supertall building. Struct Des Tall Spec Build 25(17):926–946

    Article  Google Scholar 

  • Luo KH, Wang YY (2012) Researches about the conversion relationships among the parameters of ground motions in the seismic design codes of China, America and Europe. In: 15th world conference on earthquake engineering, Lisbon, Portugal

  • MAE (2006) Earthquake risk assessment using MAEviz 2.0, a tutorial. Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana-Champaign

  • Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  • Michel C, Hannewald P, Lestuzzi P, Fäh D, Husen S (2016) Probabilistic mechanics-based loss scenarios for school buildings in Basel (Switzerland). Bull Earthq Eng 15:1471–1496. doi:10.1007/s10518-016-0025-2

    Article  Google Scholar 

  • Milani G, Benasciutti D (2010) Homogenized limit analysis of masonry structures with random input properties: polynomial response surface approximation and Monte Carlo simulations. Struct Eng Mech 34(4):417–447

    Article  Google Scholar 

  • MOHURD (2010) Code for seismic design of buildings (GB50011-2010). Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing (in Chinese)

    Google Scholar 

  • Na UJ, Chaudhuri SR, Shinozuka M (2008) Probabilistic assessment for seismic performance of port structures. Soil Dyn Earthq Eng 28(2):147–158

    Article  Google Scholar 

  • Pagnini L, Vicente R, Lagomarsino S, Varum H (2008) A mechanical method for the vulnerability assessment of masonry buildings. In: 14th world conference on earthquake engineering, Beijing, China

  • Parisi F, Augenti N (2012) Uncertainty in seismic capacity of masonry buildings. Buildings 2(3):218–230

    Article  Google Scholar 

  • Parisi F, Galasso C (2014) Probabilistic strength domains of masonry walls reinforced with externally bonded composites. In: 2nd European conference on earthquake engineering and seismology

  • Poon D, Hsiao L, Zhu Y, Joseph L, Zuo S, Fu G, Ihtiyar O (2011) Non-linear time history analysis for the performance based design of Shanghai Tower. In: Structures congress, p 541–551

  • Porter KA, Beck JL, Shaikhutdinov RV (2002) Sensitivity of building loss estimates to major uncertain variables. Earthq Spectra 18(4):719–743

    Article  Google Scholar 

  • Remo JW, Pinter N (2012) Hazus-MH earthquake modeling in the central USA. Nat Hazards 63(2):1055–1081

    Article  Google Scholar 

  • Rossetto T, Gehl P, Minas S, Galasso C, Duffour P, Douglas J, Cook O (2016) FRACAS: a capacity spectrum approach for seismic fragility assessment including record-to-record variability. Eng Struct 125:337–348

    Article  Google Scholar 

  • Rota M, Penna A, Magenes G (2014) A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty. Earthq Eng Struct Dyn 43(7):1045–1066

    Article  Google Scholar 

  • Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  Google Scholar 

  • SAC (2009) Classification of earthquake damage to buildings and special structures (GB/T 24335-2009). Standardization Administration of the People’s Republic of China (in Chinese)

  • Shi QX, Yi WZ (2000) Tentative studies on the aseismic behavior and investigation of collapse resistant capacity of porous masonry walls. J Xi’an Univ Arch Technol 32(3):271–275 (in Chinese)

    Google Scholar 

  • Shin DH, Kim HJ (2014) Probabilistic assessment of structural seismic performance influenced by the characteristics of hysteretic energy dissipating devices. Int J Steel Struct 14(4):697–710

    Article  Google Scholar 

  • Sun QZ, Yan WM, Zhou XY, Zhou HY (2006) Experimental study on aseismic performance of bearing two-row-hole concrete block wall with constructional column and horizontal steel bar. Constr Technol 35(6):93–95 (in Chinese)

    Google Scholar 

  • Tian Y, Lu X, Lu XZ, Li MK, Guan H (2016) Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthq Struct 11(6):925–942. doi:10.12989/eas.2016.11.6.925

    Article  Google Scholar 

  • Ural A, Doğangün A, Sezen H, Angın Z (2012) Seismic performance of masonry buildings during the 2007 Bala, Turkey earthquakes. Nat Hazards 60(3):1013–1026

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2006) Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthq Eng Struct Dyn 35(9):1097–1117

    Article  Google Scholar 

  • Wang ZG, Xue GY, Gao BL, Zhang JT (2003) Experimental research on the seismic behavior of confined shale brick masonry walls. J Southeast Univ 33(5):638–642 (in Chinese)

    Google Scholar 

  • Wang FC, Liu YX, Liu YL, Yang JC, Guo G, Guo ZS (2004) Experimental research on the seismic behavior of the blind-hole porous brick walls. Brick Tile 5:7–11 (in Chinese)

    Google Scholar 

  • Wang T, Zhang YQ, Chen X, Li WF (2014) Mechanical behavior of masonry walls retrofitted with prefabricated reinforced concrete panels. Eng Mech 31(8):144–153 (in Chinese)

    Google Scholar 

  • Weng XP (2010) Numerical simulation analysis and experimental study on seismic behavior of cavity wall masonry. Dissertation, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China (in Chinese)

  • Wu WB (2012) Study on seismic performance of autoclaved fly ash bricks. Dissertation, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (in Chinese)

  • Wu H, Zhao SC, Xu H, Zhang PB, Wu G (2012) Damage characteristic analysis of transverse wall of brick concrete masonry school buildings with different structural measures. Build Struct 42(S1):226–230 (in Chinese)

    Google Scholar 

  • Xiao JZ, Huang JD, Yao Y (2012) Test on seismic behavior of recycled concrete block walls. J Build Struct 42(4):100–109 (in Chinese)

    Google Scholar 

  • Xie LL, Lu XZ, Guan H, Lu X (2015) Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints and overall structure. J Earthq Eng 19(8):1320–1344

    Article  Google Scholar 

  • Xiong C, Lu XZ, Hori M, Guan H, Xu Z (2015) Building seismic response and visualization using 3D urban polygonal modeling. Autom Constr 55:25–34

    Article  Google Scholar 

  • Xiong C, Lu XZ, Guan H, Xu Z (2016) A nonlinear computational model for regional seismic simulation of tall buildings. Bull Earthq Eng 14(4):1047–1069

    Article  Google Scholar 

  • Xiong C, Lu XZ, Lin XC, Xu Z, Ye LP (2017) Parameter determination and damage assessment for THA-based regional seismic damage prediction of multi-story buildings. J Earthq Eng 21(3):461–485

    Article  Google Scholar 

  • Xu Z, Lu XZ, Guan H, Han B, Ren AZ (2014) Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine. Nat Hazards 71(3):1679–1693

    Article  Google Scholar 

  • Xu Z, Lu X, Law KH (2016) A computational framework for regional seismic simulation of buildings with multiple fidelity models. Adv Eng Softw 99:100–110

    Article  Google Scholar 

  • Yamashita T, Hori M, Kajiwara K (2011) Pet scale computation for earthquake engineering. Comput Sci Eng 13(4):44–49

    Article  Google Scholar 

  • Yan KF (1985) Experimental research on the seismic behavior of the KP_1 perforated clay brick walls. Sichuan Build Sci 1:34–39 (in Chinese)

    Google Scholar 

  • Yang YX (2008) Experimental study on seismic performance of autoclaved fly ash-lime solid brick walls. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  • Yang DJ, Gao YF, Sun JB, Wang SX, Cheng QX (2000) Experimental study on aseismic behavior of concrete block walls with construction-core column system. J Build Struct 21(4):22–27 (in Chinese)

    Google Scholar 

  • Yang WJ, Chen LQ, Zhu XQ (2008) Experimental study on seismic behavior of concrete perforated brick walls. Eng Mech 25(9):126–133 (in Chinese)

    Google Scholar 

  • Ye YH, Li LQ, Sun WM, Gu Z, Cheng JG (2004) Experimental study on seismic behaviors of hollow block wall filled with foaming concrete. Earthq Eng Eng Vib 24(5):154–158 (in Chinese)

    Google Scholar 

  • Yepes-Estrada C, Silva V, Rossetto T, D’Ayala D, Ioannou I, Meslem A, Crowley H (2016) The Global Earthquake Model physical vulnerability database. Earthq Spectra 32(4):2567–2585

    Article  Google Scholar 

  • Yi DH (1996) Non-parametric statistics: method and application. China Statistics Press, Beijing (in Chinese)

    Google Scholar 

  • Yu JG (2003) Study on lateral bearing capacity and lateral stiffness of prestressed brick walls. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  • Zeng X, Lu XZ, Yang TY, Xu Z (2016) Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazards 83(1):177–192

    Article  Google Scholar 

  • Zhang H (2005) Experimental study on seismic and crack-resistance behavior of composite concrete block masonry walls. Dissertation, College of Civil Engineering, Nanjing University of Technology, Nanjing, China (in Chinese)

  • Zhang W (2007a) The finite element analysis of experimental results of and research to shear capacity of CFRP strengthened masonry. Dissertation, School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China (in Chinese)

  • Zhang H (2007b) Experimental study on seismic behavior of load bearing walls with opening built by fly ash-autoclaved bricks and fly ash block walls restricted by constructional columns and topbeam. Dissertation, College of Civil Science and Engineering, Yangzhou University, Yangzhou, China (in Chinese)

  • Zhang Z (2010) Experimental research a theoretical analysis on seismic behavior of masonry strengthened by SGFRP. Dissertation, Wuhan University of Technology, School of Civil Engineering and Architecture, Wuhan, China ( in Chinese)

  • Zheng NN (2010) Research on seismic behavior of masonry structures with fabricated tie-columns. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  • Zhang YQ (2014) Seismic damage analyses of masonry structure retrofitted by prefabricated reinforced concrete panels. Dissertation, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (in Chinese)

  • Zhou HY (2004) Experimental study on seismic behavior of small concrete hollow block walls restricted by constructional columns. Dissertation, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China (in Chinese)

  • Zhou XY, Li WJ, Yan WM, Guo MN, Zhou HY (2006) An experimental study on the seismic behavior of small concrete block walls confined by tie columns and beams. China Civ Eng J 39(8):45–50 (in Chinese)

    Google Scholar 

  • Zhou Y, Shi W, Han R (2012) Vibration test and analysis of the fundamental period of multi-story masonry structures with large-bay. Eng Mech 29(11):197–204 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51578320, 51378299) and the National Key Technology R&D Program (No. 2015BAK14B02). The authors would like also to acknowledge Professor Quanwang Li and Mr. Xiang Zeng for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzheng Lu.

Appendices

Appendix 1: Typical parameters of reinforced masonry test specimens considered in this study

Reference

Number of specimens

Typical parameters of specimens

Length (mm)

Height (mm)

Thickness (mm)

Size of tie columns (mm)

Liu et al. (1981)

9

4500

2800

240

240

Yan (1985)

15

2140

1080

240

120

Shi and Yi (2000)

7

2320

1220

240

120

Yang et al. (2000)

3

1400

1120

190

200

Wang et al. (2003)

9

1920, 2220, 4520

1750

240

120

Yu (2003)

4

3000

1500

120

120

Wang et al. (2004)

4

2550

1800

240

150

Ye et al. (2004)

1

2800

2000

240

200

Zhou (2004)

6

4410

2700

190

210

Zhang (2005)

4

2800

2000

270

200

Huang (2006)

2

2380

1480

190

120

Sun et al. (2006)

6

4410

2700

190

210

Zhou et al. (2006)

2

4410

2700

190

210

Zhang (2007a)

3

2110, 2200

2180, 1500

240

120, 200

Zhang (2007b)

2

2720

1520

120

120

Gong (2008)

4

1830, 2730

2160, 1740

240

240

Hao et al. 2008

4

1830, 2730

2160, 1740

240

240

Yang (2008)

1

2800

1400

240

120

Yang et al. (2008)

3

1480, 1730, 2230

1250

120

120

Fang (2009)

4

2800

1360

120

120

Han (2009)

4

2800

1650

240

120

Gu et al. (2010)

8

666, 2000

413, 1240

80, 240

40, 120

Weng (2010)

2

4770

3230

250

250

Zhang (2010)

1

2050

1500

240

150

Zheng (2010)

7

3000

1500

240

240

Liu et al. (2011)

4

2720

1580

120

120

Wu et al. (2012)

4

3300

1650

240

78, 120

Wu (2012)

3

1500, 2000

1750

240

120

Xiao et al. (2012)

3

3200

2200

220

200

Guo et al. (2014)

3

2650

1900

240

200

Wang et al. (2014)

1

2000

1860

240

120

Zhang (2014)

2

2000

1860

240

120

Appendix 2: Parameters obtained for reinforced masonry test specimens considered in this study

References

ID

Ω y

Ω p

δ p

δ s

Liu et al. (1981)

WZI-1

2.8275

1.2967

WZI-2

3.0066

1.1097

WZI-3

2.8747

1.1672

WZII-1

2.9987

1.0851

WZII-2

3.0944

1.1289

WZII-3

3.0465

1.0576

WZIII-1

2.4423

1.1143

WZIII-2

2.3585

1.1479

WZIII-3

2.3236

1.1021

Yan (1985)

A-1

0.0035

A-2

0.0015

A-3

0.0026

B-1

0.0023

B-2

0.0019

B-3

0.0020

B-4

0.0020

C-1

0.0019

C-2

0.0025

C-3

0.0025

C-4

0.0019

D-1

0.0020

D-2

0.0019

D-3

0.0021

D-4

0.0025

Shi and Yi (2000)

W7

3.4207

1.1628*

0.0065

0.0152

W8

3.0708

0.0055

0.0170

W9

3.5095

0.0038

0.0143

W10

3.3294

0.0093

0.0196

W11

3.0076

0.0096

0.0188

W12

2.8930

0.0046

0.0161

W13

4.0790

0.0054

0.0179

Yang et al. (2000)

Z2-1

2.2011

2.0755

0.0050

0.0062

Z2-2

2.1596

2.1154

0.0037

0.0071

Z3-1

2.3257

2.0179

0.0044

0.0070

Wang et al. (2003)

W1-t

2.0288

1.8130

0.0034

W1-m

1.9898

1.6273

0.0019

W1-b

2.0883

1.5086

0.0033

W2-t

2.1669

1.7027

0.0020

W2-m

2.4135

1.7273

0.0034

W2-b

2.1892

1.4599

0.0025

W3-t

2.3573

1.3944

0.0042

W3-m

1.9380

1.7772

0.0021

W3-b

1.9544

1.5771

0.0012

Yu (2003)

W-I

3.7781

1.4207

0.0088

W-II

3.9181

1.3707

0.0098

WH-I

4.4380

1.3333

0.0056

WH-II

4.1940

1.4306

0.0073

Wang et al. (2004)

MK-1

2.8656

1.0807

0.0033

0.0089

MK-2

2.8907

1.1304

0.0027

0.0061

MK-3

2.6974

1.2000

0.0047

0.0078

MK-4

1.9920

1.5833

0.0052

0.0075

Ye et al. (2004)

SW2

3.0766

1.1968

0.0017

0.0050

Zhou (2004)

A-1

1.8439

2.7953

0.0015

0.0034

A-2

2.1267

2.2667

0.0015

0.0025

A-3

1.4171

3.7337

0.0016

0.0021

A-4

2.3503

1.8199

0.0008

0.0021

A-5

2.3538

1.9746

0.0007

0.0032

A-6

2.3538

1.9135

0.0009

0.0023

Zhang (2005)

W-1

1.9529

1.5840

0.0036

0.0064

W-2

2.1012

1.5375

0.0018

0.0041

W-3

2.5296

1.8042

0.0016

0.0050

W-4

2.5830

1.7826

0.0014

0.0056

Huang (2006)

CMC-1

4.2835

1.4194

CMC-2

4.6267

1.2475

Sun et al. (2006)

E-1

1.8225

2.4579

0.0008

1.822

E-2

1.8284

2.9180

0.0008

1.828

F-1

3.0506

1.8205

0.0016

3.051

F-2

2.4274

2.2051

0.0018

2.427

G-1

3.0352

1.6771

0.0011

3.035

G-2

3.0352

1.7740

0.0011

3.035

Zhou et al. (2006)

W-1

1.6499

0.0006

W-4

1.4059

0.0028

Zhang (2007a)

W1

2.2558

1.6286

0.0029

W4

3.7276

1.1500

0.0051

W11

2.7010

1.4143

0.0023

Zhang (2007b)

WA-3

3.3375

0.0114

0.0144

WA-4

3.8619

0.0186

0.0220

Gong (2008)

WA-1

4.0302

1.4762

0.0068

0.0097

WA-2

4.1756

1.4069

0.0083

0.0126

WA-3

3.8397

1.5000

0.0081

0.0095

WA-4

4.0620

1.3810

0.0094

0.0119

Hao et al. (2008)

WL1

4.0302

1.3810

0.0068

0.0104

WL2

3.7437

1.5692

0.0035

0.0062

WL3

3.8397

1.5625

0.0107

0.0131

WL4

3.7120

1.3810

0.0076

0.0119

Yang (2008)

Q5

1.4807

2.0600

0.0053

0.0063

Yang et al. (2008)

W-1b

1.7569

2.3395

0.0085

0.0131

W-2b

1.7517

2.4249

0.0055

0.0102

W-3b

2.0738

2.3175

0.0054

0.0115

Fang (2009)

GP-0.6-1

2.3574

1.5416

0.0005

GP-0.3-1

2.4899

1.3942

0.0038

GP-0.3-2

2.4953

1.2692

0.0020

GD-0.6-1

1.1680

1.8968

0.0033

Han (2009)

FQZ-1

2.4913

1.3653

0.0004

FQZ-2

2.7654

1.3133

0.0013

0.0015

FQZ-3

3.3201

1.0451

0.0007

0.0030

FQZ-4

2.8531

1.2771

0.0009

0.0018

Gu et al. (2010)

PD10-5-0.6C

4.6932

1.1367

0.0029

0.0051

PD10-10-0.3C

3.4254

1.3550

0.0043

0.0108

PD10-10-0.6C

4.5262

1.3829

0.0041

0.0140

PD10-10-0.9C

5.6517

1.2369

0.0035

0.0077

PD15-15-0.6C

5.8121

1.1118

0.0042

0.0155

PD15-15-0.9C

5.5556

1.1682

0.0037

0.0155

PM-0.3C

4.7068

1.3871

0.0043

0.0075

PM-0.6C

5.2397

1.3043

0.0085

0.0120

Weng (2010)

W-1

3.0000

0.0011

W-2

2.4000

0.0016

Zhang (2010)

W-1

0.0011

0.0039

Zheng (2010)

BCW-1

2.0498

1.7450

0.0017

0.0065

BCW-2

2.2208

1.4000

0.0016

0.0049

BC2 W-1

1.2769

2.0464

0.0018

0.0054

BC2 W-2

1.2980

1.5909

0.0016

0.0042

BC2 W-3

1.6656

1.3700

0.0020

0.0099

BC2 W-4

2.2076

1.6824

0.0021

0.0072

BC2 W-5

1.6874

1.7297

0.0020

0.0060

Liu et al. (2011)

WB-1

3.2461

0.0080

0.0166

WB-2

3.1937

0.0107

0.0131

WB-3

3.1623

0.0174

0.0185

WB-4

3.9083

0.0150

0.0173

Wu et al. (2012)

HQ2

2.0012

1.5969

0.0016

0.0100

HQ3

2.3499

1.5540

0.0017

0.0120

HQ4

3.0572

1.2482

0.0015

0.0102

HQ5

3.0572

1.4475

0.0015

0.0175

Wu (2012)

LSGZ-01

2.7991

1.4044

0.0036

0.0053

ZYGZ-01

2.5177

1.2694

0.0027

0.0058

ZYGZ-02

1.9270

1.3667

0.0030

0.0089

Xiao et al. (2012)

TJ-W-1

3.6664

1.4923

0.0026

0.0051

TJ-W-3

4.6799

1.4936

0.0026

0.0075

TJ-W-4

3.7058

1.6317

0.0029

0.0043

Guo et al. (2014)

W-1

2.4650

1.7404

0.0044

0.0060

W-2

1.8429

2.4290

0.0050

0.0074

W-3

1.8182

2.5225

0.0050

0.0080

Wang et al. (2014)

TW-2

0.0033

Zhang (2014)

TW-2

2.8318

2.0603

0.0083

LW-2

1.5588

3.3669

0.0165

  1. * This value is based on the average value provided by Shi and Yi (2000)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Tian, Y., Guan, H. et al. Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis. Bull Earthquake Eng 15, 4791–4820 (2017). https://doi.org/10.1007/s10518-017-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0168-9

Keywords

Navigation