Skip to main content
Log in

Narrowband Metamaterial Absorber for Terahertz Secure Labeling

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Flexible metamaterial films, fabricated by photolithography on a thin copper-backed polyimide substrate, are used to mark or barcode objects securely. The films are characterized by continuous-wave terahertz spectroscopic ellipsometry and visualized by a scanning confocal imager coupled to a vector network analyzer that constructed a terahertz spectral hypercube. These films exhibit a strong, narrowband, polarization- and angle-insensitive absorption at wavelengths near 1 mm. Consequently, the films are nearly indistinguishable at visible or infrared wavelengths and may be easily observed by terahertz imaging only at the resonance frequency of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Siegel, 2003 THz technology: an overview, Terahertz Sensing Technology. Volume 1: Electronic Devices and Advanced Systems Technology, pp. 1–44, World Scientific, Singapore.

  2. D. Mittleman, 2003 Sensing with Terahertz Radiation, Springer, New York.

  3. H.O. Everitt and F.C. De Lucia, 2015 Detection and recognition of explosives using terahertz-frequency spectroscopic techniques. Laser-Based Optical Detection of Explosives, CRC Press, Taylor & Francis Group, Boca Raton.

  4. H-T Chen, W J. Padilla, J M. O Zide, A C. Gossard, A J. Taylor, and R D. Averitt, Active terahertz metamaterial devices, Nature 2006, 444, 597–600.

    Article  Google Scholar 

  5. H-T Chen, W J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, Electromagnetic metamaterials for THz applications, Terahertz Science and Technology 2008, 1 (1), 42–50.

    Google Scholar 

  6. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B 2009, 79, 125104.

    Article  Google Scholar 

  7. M. Diem, T. Koschny, and C. M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys. Rev. B 2009, 79, 033101.

    Article  Google Scholar 

  8. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 2008, 78(24), 241103.

  9. M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, Terahertz metamaterials fabricated by inkjet printing, Appl. Phys. Lett. 2009, 95 (25), 251107.

    Article  Google Scholar 

  10. X. Liu, M. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, J. Takeya, T. Minari, Spontaneous patterning of high-resolution electronics via parallel vacuum ultraviolet, Adv. Mat. 2016, 28 (31), 6568–6573.

    Article  Google Scholar 

  11. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations, Phys. Rev. Appl. 2015, 3, 037001.

    Article  Google Scholar 

  12. J. Yang, and Z. Shen. A thin and broadband absorber using double-square loops, IEEE Antennas and Wireless Propagation Lett, 2007, 6 , 388–391.

    Article  Google Scholar 

  13. H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, Fabrication of terahertz metamaterials by laser printing, Optics Letters 2010, 35 (23), pp. 4039–4041.

    Article  Google Scholar 

  14. R. Ortu O C. Garc A. Meca, and A Martnez, Terahertz metamaterials on flexible polypropylene substrate, Plasmonics, 2014, 9 (5) pp. 1143–1147.

    Article  Google Scholar 

  15. http://www.insulectro.com/content_media/file/Dupont_LFclad_H-73244.pdf.

  16. D. Ye, Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, L. Ran, Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces, IEEE Trans Antennas Prop. 2012, 60, 5164.

    Article  Google Scholar 

  17. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, Variable-wavelength frequency-domain terahertz ellipsometry, Rev. Sci. Instrum. 2010, 81, 023101.

    Article  Google Scholar 

  18. J. M. Lau, J. W. Fowler, T. A. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollck, M. Halpern, D. Marsden, G. Marsden, Millimeter-wave antireflection coating for cryogenic silicon lenses, Appl. Opt. 2006, 45 (16), 3746–3751.

    Article  Google Scholar 

  19. A. Ali, M. M. Jatlaoui, S. Hebib, H. Aubert, D. Dragomirescu, 60 GHz Rectangular Patch Antennas on Flexible Substrate: Design and Experiment. Progress In Electromagnetics Research Symposium Abstracts, (Marrakesh, Morocco, Mar. Session 2P9: Poster Session 4, 610 20–23, 2011.

  20. K. N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE Trans. on Antennas and Propagation, 2000, 48 (8), 1230–1234.

    Article  Google Scholar 

  21. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption, Phys. Rev. Lett. 2013, 111 , 187402.

    Article  Google Scholar 

  22. J. M. Woo, D. Kim, S. Hussain, and J.-H. Jang, Low-loss flexible bilayer metamaterials in THz regime. Opt. Exp. 2014, 22 (3), 2289–2298.

Download references

Acknowledgements

This work was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001, and Triton Systems Internal Research and Development Program 1500-197. The authors wish to thank John Blum for his contributions to alternative fabrication methodologies.

Supporting Information

A video version of the terahertz hypercube images, sweeping through the hyperplanes one frequency at a time, can be viewed in the supplement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry O. Everitt.

Additional information

Equal contributors: Magued Nasr, Scott A. Skirlo, and Jonathan T. Richard

Electronic supplementary material

(MP4 6.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, M., Richard, J.T., Skirlo, S.A. et al. Narrowband Metamaterial Absorber for Terahertz Secure Labeling. J Infrared Milli Terahz Waves 38, 1120–1129 (2017). https://doi.org/10.1007/s10762-017-0389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0389-7

Keywords

Navigation