Skip to main content
Log in

Five-year volume growth of European beech does not respond to ozone pollution in Italy

  • Ozone and plant life: the Italian state-of-the-art
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A unique database of stand volume growth, estimated as periodic annual volume increment (in m3 ha−1 per year over the period 2001–2005) from 728 European beech (Fagus sylvatica L.) sites distributed across Italy, was used to assess the effects of ambient ozone (O3), expressed as annual average (M24), accumulated exposure above a 40 ppb hourly threshold (AOT40), and total stomatal ozone flux (POD0). Growth data were from the National forest inventory of Italy, while climate data and ozone concentrations were computed by the WRF and CHIMERE models, respectively. Results show that the growth increased with increasing solar radiation and air temperature and decreased with increasing number of cold days, while effects of soil water content and O3 were not significant. In contrast, the literature results suggest that European beech is sensitive to both drought and O3. Ozone levels resulted to be very high (48 ppb M24, 51,200 ppb h AOT40, 21.08 mmol m−2 POD0, on average) and thus able to potentially affect European beech growth. We hypothesize that the high-frequency signals of soil water and O3 got lost when averaged over 5 years and recommended finer time-resolution investigations and inclusion of other factors of variability, e.g., thinning, tree age, and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anav A, De Marco A, Proietti C, Alessandri A, Dell’Aquila A, Cionni I, Friedlingstein P, Khvorostyanov D, Menut L, Paoletti E, Sicard P, Sitch S, Vitale M (2016) Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Glob Chang Biol 22:1608–1627

    Article  Google Scholar 

  • Arbaugh MJ, Miller PR, Carroll JJ et al (1998) Relationships of ozone exposure to pine injury in the Sierra Nevada and San Bernardino Mountains of California, USA. Environ Pollut 101:291–301

    Article  CAS  Google Scholar 

  • Bourdu R (1999) Le hêthre. ACTES SUD, France

    Google Scholar 

  • Braun S, Schindler C, Rihm B (2014) Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment data of Fagus sylvatica L. and Picea abies Karst. Environ Pollut 192:129–138

    Article  CAS  Google Scholar 

  • Braun S, Achermann B, De Marco A, Pleijel H, Karlsson PE, Rihm B, Schindler C, Paoletti P (2017) Epidemiological analysis of ozone and nitrogen impacts on vegetation – Critical evaluation and recommendations. Sci Total Environ. doi:10.1016/j.scitotenv.2017.02.225 (in press)

  • Bytnerowicz A (2005) Monitoring tropospheric ozone in California mountains. Phyton Ann Rei Bot 45(3):395–404

    CAS  Google Scholar 

  • Castagneri D, Nola P, Motta R, Carrer M (2014) Summer climate variability over the last 250 years differently affected tree species radial growth in a mesic Fagus-Abies-Picea old-growth forest. For Ecol Manag 320:21–29

    Article  Google Scholar 

  • Copenheaver CA, Crawford CJ, Fearer TM (2011) Age-specific responses to climate identified in the growth of Quercus alba. Trees-Struct Funct 25:647–653

    Article  Google Scholar 

  • De Marco A, Screpanti A, Paoletti E (2010) Geostatistics as a validation tool for setting ozone standards for durum wheat. Environ Pollut 158:536–542

    Article  CAS  Google Scholar 

  • De Marco A, Sicard P, Vitale M, Carriero G, Renou C, Paoletti E (2015) Metrics of ozone risk assessment for southern European forests: canopy moisture content as a potential plant response indicator. Atmos Environ 120:182–190

    Article  CAS  Google Scholar 

  • De Marco A, Sicard P, Fares S, Tuovinen J-P, Anav A, Paoletti E (2016) Assessing the role of soil water limitation in determining the phytotoxic ozone dose (PODY) thresholds. Atm Env 147:88–97

    Article  CAS  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variation of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78

    Article  Google Scholar 

  • Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  Google Scholar 

  • Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, Vitale M (2013) Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Chang Biol 19:2427–2443

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567

    Google Scholar 

  • Gasparini P, Di Cosmo L (2016) Chapter 26 Italy. In: Vidal C et al (eds) National forest inventories—assessment of wood availability and use. Springer, pp 485–506

  • Gasparini P, Bertani R, De Natale F, Di Cosmo L, Pompei E (2009) Quality control procedures in the Italian national forest inventory. J Environ Monit 11:761–768

    Article  CAS  Google Scholar 

  • Granier A, Reichstein M, Breda N et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145

    Article  Google Scholar 

  • Hoshika Y, De Marco A, Materassi A, Paoletti E (2016) Light intensity affects ozone-induced stomatal sluggishness in snapbean. Water Air Soil Pollut 227:419–425

    Article  Google Scholar 

  • Hoshika Y, Fares S, Gruening C, Goded I, De Marco A, Sicard P, Paoletti E (2017) Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric For Meteorol 234:212–221

    Article  Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Jarcuška B (2009) Growth, survival, density, biomass partitioning and morphological adaptations of natural regeneration in Fagus sylvatica. A review. Dendrobiology 61:3–11

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. R Soc Publ 273:593–610

    CAS  Google Scholar 

  • Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2003) New Critical levels for ozone impact on trees based on AOT40 and leaf cumulated uptake of ozone. In: Karlsson PE, Selldén G, Pleijel H (eds)

  • Karlsson PE, Örlander G, Langvall O, Uddling J, Hjorth U, Wiklander K, Areskoug B, Grennfelt P (2006) Negative impact of ozone on the stem basal area increment of mature Norway spruce in south Sweden. For Ecol Manag 232:146–151

    Article  Google Scholar 

  • Kühn A, Grill S, Baumgarten M, Ankerst DP, Matyssek R (2015) Daily growth of European beech (Fagus sylvatica L.) on moist sites is affected by short-term drought rather than ozone uptake. Trees 29:1501–1519

    Article  Google Scholar 

  • Latte N, Perin J, Kint V, Lebourgeois F, Claessens H (2016) Major changes in growth rate and growth variability of beech (Fagus sylvatica L.) related to soil alteration and climate change in Belgium. Forests 7:174–188

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees-Struct Funct 19:385–401

    Article  Google Scholar 

  • Lin M, Horowitz LW, Cooper OR et al (2015) Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophys Res Lett 42:8719–8728

    Article  CAS  Google Scholar 

  • Manning WJ (2005) Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: progress and an experimental approach. Environmental Pollution 137:443–454

  • McLaughlin SB, Nosal M, Wullschleger SD, Sun G (2007) Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytol 174:109–124

    Article  CAS  Google Scholar 

  • Menut L, Bessagnet B, Khvorostyanov D, Beekmann M, Blond N, Colette A, Coll I, Curci G, Foret G, Hodzic A, Mailler S, Meleux F, Monge JL, Pison I, Siour G, Turquety S, Valari M, Vautard R, Vivanco MG (2013) CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci Model Dev 6:981–1028

    Article  Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171

    Article  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson LD, González-Fernández I, Grünhage L, Harmens H, Hayes F, Karlsson PE, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068

    Article  CAS  Google Scholar 

  • Mircea M, Ciancarella L, Briganti G, Calori G, Cappelletti A, Cionni I, Costa M, Cremona G, D’Isidoro M, Finardi S, Pace G, Piersanti A, Righini G, Silibello C, Vitali L, Zanini G (2014) Assessment of the AMS-MINNI system capabilities to predict air quality over Italy for the calendar year 2005. Atmos Environ 84:178–188

    Article  CAS  Google Scholar 

  • Panek J, Saah D, Esperanza A et al (2013) Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA. Environ Pollut 182:343–356

    Article  CAS  Google Scholar 

  • Paoletti E (2007) Ozone impacts on forests. CAB reviews: perspectives in agriculture, veterinary science. Nutr Nat Resour 2(68):13

  • Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95

    Article  CAS  Google Scholar 

  • Paoletti E, De Marco A, DCS B, Harrison RM, Manning WJ (2014) Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ Pollut 192:295–299

    Article  CAS  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967

    Article  CAS  Google Scholar 

  • Rozas V (2015) Individual-based approach as a useful tool to disentangle the relative importance of tree age, size and inter-tree competition in dendroclimatic studies. For Biogeosci For 8:187–194

    Google Scholar 

  • Sari D, Incecik S, Ozkurt N (2016) Surface ozone levels in the forest and vegetation areas of the Biga Peninsula, Turkey. Sci Total Environ 571:1284–1297

    Article  CAS  Google Scholar 

  • Scalfi M, Troggio M, Piovani P, Leonardi S, Magnaschi G, Vendramin GG, Menozzi P (2004) A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sylvatica L.) Theor Appl Genet 108:433–441

    Article  CAS  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

  • Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Renou C, Paoletti E (2016a) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in southern European forests. Sci Total Environ 541:729–741

    Article  CAS  Google Scholar 

  • Sicard P, Serra R, Rossello P (2016b) Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012. Environ Res 149:122–144

    Article  CAS  Google Scholar 

  • Sicard P, Augustaitis A, Belyazid S, Calfapietra C, De Marco A, Fenn M, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E (2016c) Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ Pollut 213:977–987

    Article  CAS  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J A (2007) Description of the Advanced Research WRF Version 2, NCAR Technical Note, Boulder, Colorado, USA, NCAR/TN–468+STR

  • Sousa SIV, Martins FG, Alvim-Ferraz MCM et al (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw 22:97–103

    Article  Google Scholar 

  • Tabacchi G, De Natale F, Floris A, Gagliano C, Gasparini P, Scrinzi G, Tosi V (2007) Italian national forest inventory: methods, state of the project, and future developments. Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, pp 55–66

  • Tabacchi G, Di Cosmo L, Gasparini P, Morelli S (2011) Stima del volume e della fitomassa delle principali specie forestali italiane. Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea. Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale, Trento 412 pp

    Google Scholar 

  • UNECE (2010) Mapping critical levels for vegetation. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, Bangor

    Google Scholar 

  • Vestreng V (2003) Review and revision: Emission data reported to CLRTAP, MSC-W Status Report 2003, Note 1/2003. Oslo Meteorological Institute, Oslo

    Google Scholar 

  • Vinceti B, Paoletti E, Wolf U (1998) Analysis of soil, roots and mycorrhizae in a Norway spruce declining forest. Chemosphere 36:937–942

    Article  CAS  Google Scholar 

  • Weiskittel AR, Hann DW, Kershaw JA, Vanclay JK (2011) Forest growth and yield modeling. Wiley-Blackwell, Hoboken, p 430

    Book  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Chang Biol 15:396–424

    Article  Google Scholar 

  • Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z (2016) Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant Cell Environ 39:2276–2287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conceived and planned within the COST Action FP0903 and finalized with the financial support of the LIFE15 ENV/IT/000183 MOTTLES project. Data from the National Forest Inventory are now available at www.inventarioforestale.org

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra De Marco.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoletti, E., De Marco, A., Anav, A. et al. Five-year volume growth of European beech does not respond to ozone pollution in Italy. Environ Sci Pollut Res 25, 8233–8239 (2018). https://doi.org/10.1007/s11356-017-9264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9264-2

Keywords

Navigation