Skip to main content
Log in

Functional roles of T3.37 and S5.46 in the activation mechanism of the dopamine D1 receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The activation mechanism of dopamine receptors is unknown. The amino acids S5.42, S5.43, and S5.46 located in helix 5 appear to be crucial, but their specific roles in receptor activation have not been studied. We modeled the D1 dopamine receptor using the crystal structures of the D3 dopamine and β2 adrenergic receptors. Molecular dynamics simulations show that the interaction of dopamine with the D1 receptor leads to the formation of a hydrogen-bond network with its catechol group and helices 3, 5, and 6, including water molecules. The para hydroxyl group of dopamine binds directly to S5.42 and N6.55, the latter also interacting with S5.43. Unexpectedly, S5.46 does not interact directly with the catechol; instead, it interacts through a water molecule with S5.42 and directly with T3.37. The formation of this hydrogen-bond network, part of which was previously observed in docking studies with dopamine agonists, triggers the opening of the E6.30–R3.60 ionic lock associated with the activation of GPCRs. These changes do not occur in the unbonded (apo) receptor or when it is in a complex with the antagonist 3-methoxy-5,6,7,8,9,14-hexahydrodibenz[d,g]azecine. Our results provide valuable insight into the T3.37–S5.46–water–S5.43–ligand interaction, which may be crucial to the activation of the D1 dopamine receptor and should be considered during the design of novel agonists.

General representation of the relationship between the formation of the HBN and the opening of the R3.50–E6.30 ionic lock

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hardman JG, Goodman-Gilman A, Limbird LE (1995) Goodman & Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp. 283–282

  2. Kalant H, Roschlau W (1998) Principles of medical pharmacology, 6th edn. Oxford University Press, Oxford, pp 101–104

  3. Malo M, Brive L, Luthman K, Svensson P (2010) Selective pharmacophore models of dopamine D1 and D2 full agonists based on extended pharmacophore features. ChemMedChem 5:232–246

    Article  CAS  Google Scholar 

  4. Malo M, Brive L, Luthman K, Svensson P (2012) Investigation of D1 receptor–agonist interactions and D1/D2 agonist selectivity using a combination of pharmacophore and receptor homology modeling. ChemMedChem 7:483–494

    Article  CAS  Google Scholar 

  5. Ballesteros JA, Weinstein H (1995) In: Stuart CS (ed) Methods in neurosciences, vol 25. Academic, San Diego, pp 366–428

  6. Platania CBM, Salomone S, Leggio GM, Drago F, Bucolo C (2012) Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One 7:e44316

  7. Platania CBM, Leggio GM, Drago F, Salomone S, Bucolo C (2013) Regulation of intraocular pressure in mice: structural analysis of dopaminergic and serotonergic systems in response to cabergoline. Biochem Pharmacol 86:1347–1356

  8. Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A (2013) Update 1 of: recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 113:R123–PR178

  9. Chemel BR, Bonner LA, Watts VJ, Nichols DE (2012) Ligand-specific roles for transmembrane 5 serine residues in the binding and efficacy of dopamine D1 receptor catechol agonists. Mol Pharmacol 81:729–738

    Article  CAS  Google Scholar 

  10. Nyrönen T, Pihlavisto M, Peltonen JM, Hoffrén A-M, Varis M, Salminen T, Wurster S, Marjamäki A, Kanerva L, Katainen E, Laaksonen L, Savola J-M, Scheinin M, Johnson MS (2001) Molecular mechanism for agonist-promoted α2A-adrenoceptor activation by norepinephrine and epinephrine. Mol Pharmacol 59:1343–1354

    Google Scholar 

  11. Selent J, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 6:e1000884

    Article  Google Scholar 

  12. Taddese B, Simpson LM, Wall ID, Blaney FE, Reynolds CA (2013) Chapter two—modeling active GPCR conformations. Methods Enzymol 522:21–35

  13. Tomic M, Seeman P, George SR, Odowd BF (1993) Dopamine D1 receptor mutagenesis: role of amino acids in agonist and antagonist binding. Biochem Biophys Res Commun 191:1020–1027

  14. Cueva JP, Gallardo-Godoy A, Juncosa JI, Vidi PA, Lill MA, Watts VJ, Nichols DE (2011) Probing the steric space at the floor of the D1 dopamine receptor orthosteric binding domain: 7α-, 7β-, 8α-, and 8β-methyl substituted dihydrexidine analogues. J Med Chem 54:5508–5521

    Article  CAS  Google Scholar 

  15. Fu W, Shen J, Luo X, Zhu W, Cheng J, Yu K, Briggs JM, Jin G, Chen K, Jiang H (2007) Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (−)-stepholidine: molecular modeling and dynamics simulations. Biophys J 93:1431–1441

  16. Kołaczkowski M, Bucki A, Feder M, Pawłowski M (2013) Ligand-optimized homology models of D1 and D2 dopamine receptors: application for virtual screening. J Chem Inf Model 53:638–648

  17. Mente S, Guilmette E, Salafia M, Gray D (2015) Dopamine D1 receptor–agonist interactions: a mutagenesis and homology modeling study. Bioorg Med Chem Lett 25:2106–2111

  18. Pollock NJ, Manelli AM, Hutchins CW, Steffey ME, MacKenzie RG, Frail DE (1992) Serine mutations in transmembrane V of the dopamine D1 receptor affect ligand interactions and receptor activation. J Biol Chem 267:17780–17786

    CAS  Google Scholar 

  19. Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SGF, Shi L, Gether U, Javitch JA (2001) Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177

  20. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60

    Article  CAS  Google Scholar 

  21. Goncalves JA, Ahuja S, Erfani S, Eilers M, Smith SO (2010) Structure and function of G protein-coupled receptors using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:159–180

    Article  CAS  Google Scholar 

  22. Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  Google Scholar 

  23. Patel AB, Crocker E, Reeves PJ, Getmanova EV, Eilers M, Khorana HG, Smith SO (2005) Changes in interhelical hydrogen bonding upon rhodopsin activation. J Mol Biol 347:803–812

    Article  CAS  Google Scholar 

  24. Bhattacharya S, Hall SE, Vaidehi N (2008) Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. J Mol Biol 382:539–555

    Article  CAS  Google Scholar 

  25. Han S-J, Hamdan FF, Kim S-K, Jacobson KA, Bloodworth LM, Li B, Wess J (2005) Identification of an agonist-induced conformational change occurring adjacent to the ligand-binding pocket of the M3 muscarinic acetylcholine receptor. J Biol Chem 280:34849–34858

    Article  CAS  Google Scholar 

  26. Lu Z-L, Hulme EC (1999) The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J Biol Chem 274:7309–7315

    Article  CAS  Google Scholar 

  27. Sansuk K, Deupi X, Torrecillas IR, Jongejan A, Nijmeijer S, Bakker RA, Pardo L, Leurs R (2011) A structural insight into the reorientation of transmembrane domains 3 and 5 during family A G protein-coupled receptor activation. Mol Pharmacol 79:262–269

  28. Ambrosio C, Molinari P, Fanelli F, Chuman Y, Sbraccia M, Ugur O, Costa T (2005) Different structural requirements for the constitutive and the agonist-induced activities of the β2-adrenergic receptor. J Biol Chem 280:23464–23474

  29. Bonner LA, Laban U, Chemel BR, Juncosa JI, Lill MA, Watts VJ, Nichols DE (2011) Mapping the catechol binding site in dopamine D1 receptors: synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem 6:1024–1040

  30. Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226:462–468

    CAS  Google Scholar 

  31. Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50:419–430

    Article  CAS  Google Scholar 

  32. Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247:1093–1102

    CAS  Google Scholar 

  33. Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  Google Scholar 

  34. Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  35. Fanelli F, De Benedetti PG (2011) Update 1 of: computational modeling approaches to structure–function analysis of G protein-coupled receptors. Chem Rev 111:R438–PR535

  36. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

  37. Melo F, Sali A (2007) Fold assessment for comparative protein structure modeling. Protein Sci 16:2412–2426

    Article  CAS  Google Scholar 

  38. Shen M-y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  Google Scholar 

  39. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488-490

  40. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinf 17:355–362

  41. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  42. Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2001) Gaussian 98, revision A.9. Gaussian, Inc., Pittsburgh

  43. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368

  44. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

  45. Cannon JG (1983) Structure–activity relationships of dopamine agonists. Annu Rev Pharmacol Toxicol 23:103–129

  46. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA (1989) Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem 264:13572–13578

  47. Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AGW, Schertler GFX, Tate CG (2011) The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469:241–244

    Article  CAS  Google Scholar 

  48. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pK as and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371

  49. Anandakrishnan R, Onufriev A (2008) Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules. J Comput Biol 15:165–184

    Article  CAS  Google Scholar 

  50. Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB (2014) Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor. Mol Biol Evol 31:3250–3265

    Article  CAS  Google Scholar 

  51. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  52. Kling RC, Lanig H, Clark T, Gmeiner P (2013) Active-state models of ternary GPCR complexes: determinants of selective receptor-G-protein coupling. PLoS One 8:e67244

  53. Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H (2012) Ligand-dependent conformations and dynamics of the serotonin 5-HT2A receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput Biol 8:e1002473

    Article  CAS  Google Scholar 

  54. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244

    Article  CAS  Google Scholar 

  55. Mohr P, Decker M, Enzensperger C, Lehmann J (2006) Dopamine/serotonin receptor ligands. 12: SAR studies on hexahydro-dibenz[d,g]azecines lead to 4-chloro-7-methyl-5,6,7,8,9,14-hexahydrodibenz[d,g]azecin-3-ol, the first picomolar D5-selective dopamine-receptor antagonist. J Med Chem 49:2110–2116

Download references

Acknowledgment

This work was supported by FONDECYT grants 1110146, 1100162, 1120280, 1161375, and 1130185. We thank Dr. G. Zapata-Torres for his help in developing the model.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Estefanía A. Hugo or Angélica Fierro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hugo, E.A., Cassels, B.K. & Fierro, A. Functional roles of T3.37 and S5.46 in the activation mechanism of the dopamine D1 receptor. J Mol Model 23, 142 (2017). https://doi.org/10.1007/s00894-017-3313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3313-0

Keywords

Navigation