Skip to main content

Advertisement

Log in

MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNAs

MAPK:

Mitogen-activated protein kinase

CHI3L-1:

Chitinase-3-like-1 protein

ERK:

Extracellular regulated protein kinase

JNK:

c-Jun N-terminal kinase

References

  1. van Hal, S.J., S.O. Jensen, V.L. Vaska, B.A. Espedido, D.L. Paterson, and I.B. Gosbell. 2012. Predictors of mortality in Staphylococcus aureus bacteremia. Clinical Microbiology Reviews 25: 362–386.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boucher, H., L.G. Miller, and R.R. Razonable. 2010. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases 51(Suppl 2): S183–S197.

    Article  CAS  PubMed  Google Scholar 

  3. Mediavilla, J.R., L. Chen, B. Mathema, and B.N. Kreiswirth. 2012. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Current Opinion in Microbiology 15: 588–595.

    Article  PubMed  Google Scholar 

  4. Alper S, Warg LA, De Arras L, Flatley BR, Davidson EJ, Adams J, Smith K, Wohlford-Lenane CL, McCray PB, Jr., Pedersen BS, et al. 2016. Novel innate immune genes regulating the macrophage response to Gram positive bacteria. Genetics 204: 327–336.

  5. Flannagan, R.S., B. Heit, and D.E. Heinrichs. 2015. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens 4: 826–868.

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Connell, R.M., D.S. Rao, and D. Baltimore. 2012. microRNA regulation of inflammatory responses. Annual Review of Immunology 30: 295–312.

    Article  PubMed  Google Scholar 

  7. O’Connell, R.M., K.D. Taganov, M.P. Boldin, G. Cheng, and D. Baltimore. 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 104: 1604–1609.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jurkin, J., Y.M. Schichl, R. Koeffel, T. Bauer, S. Richter, S. Konradi, B. Gesslbauer, and H. Strobl. 2010. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. Journal of Immunology 184: 4955–4965.

    Article  CAS  Google Scholar 

  9. Tili, E., J.J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, H. Alder, C.G. Liu, G.A. Calin, and C.M. Croce. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. Journal of Immunology 179: 5082–5089.

    Article  CAS  Google Scholar 

  10. Quinn, S.R., and L.A. O’Neill. 2011. A trio of microRNAs that control Toll-like receptor signalling. International Immunology 23: 421–425.

    Article  CAS  PubMed  Google Scholar 

  11. Li, M., J. Wang, Y. Fang, S. Gong, M. Wu, X. Lai, G. Zeng, Y. Wang, K. Yang, and X. Huang. 2016. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production. Science Reports 6: 23351.

    Article  CAS  Google Scholar 

  12. Fordham JB, Naqvi AR, Nares S. 2015. miR-24 regulates macrophage polarization and plasticity. Journal of Clinical & Cellular Immunology 6(5): 362.

  13. Isidro, R.A., and C.B. Appleyard. 2016. Colonic macrophage polarization in homeostasis, inflammation, and cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology 311: G59–G73.

    Article  PubMed  Google Scholar 

  14. Serbina, N.V., T. Jia, T.M. Hohl, and E.G. Pamer. 2008. Monocyte-mediated defense against microbial pathogens. Annual Review of Immunology 26: 421–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leitinger, N., and I.G. Schulman. 2013. Phenotypic polarization of macrophages in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 1120–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, F., Y. Kang, H. Zhang, Z. Piao, H. Yin, R. Diao, J. Xia, and L. Shi. 2013. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. Journal of Infectious Diseases 208: 528–538.

    Article  CAS  PubMed  Google Scholar 

  17. Wei, Y., and A. Schober. 2016. MicroRNA regulation of macrophages in human pathologies. Cellular and Molecular Life Sciences 73: 3473–3495.

    Article  CAS  PubMed  Google Scholar 

  18. Xu, W., M. Liu, X. Peng, P. Zhou, J. Zhou, K. Xu, H. Xu, and S. Jiang. 2013. miR-24-3p and miR-27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. International Journal of Oncology 42: 757–766.

    PubMed  Google Scholar 

  19. Ye, S.B., Z.L. Li, D.H. Luo, B.J. Huang, Y.S. Chen, X.S. Zhang, J. Cui, Y.X. Zeng, and J. Li. 2014. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5: 5439–5452.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jin, W., E.M. Ibeagha-Awemu, G. Liang, F. Beaudoin, X. Zhao, and L. le Guan. 2014. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 15: 181.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology 11: 750–761.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, S., X. Wang, H. Ni, N. Li, A. Zhang, H. Liu, F. Pu, L. Xu, J. Gao, Q. Zhao, et al. 2015. MicroRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression. Journal of Virology 89: 4494–4503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johansen, J.S., P.E. Hoyer, L.A. Larsen, P.A. Price, and K. Mollgard. 2007. YKL-40 protein expression in the early developing human musculoskeletal system. Journal of Histochemistry and Cytochemistry 55: 1213–1228.

    Article  CAS  PubMed  Google Scholar 

  24. Johansen, J.S. 2006. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Danish Medical Bulletin 53: 172–209.

    CAS  PubMed  Google Scholar 

  25. Di Rosa, M., G. Malaguarnera, C. De Gregorio, F. Drago, and L. Malaguarnera. 2013. Evaluation of CHI3L-1 and CHIT-1 expression in differentiated and polarized macrophages. Inflammation 36: 482–492.

    Article  CAS  PubMed  Google Scholar 

  26. Areshkov, P.O., S.S. Avdieiev, O.V. Balynska, D. Leroith, and V.M. Kavsan. 2012. Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. International Journal of Biological Sciences 8: 39–48.

    Article  CAS  PubMed  Google Scholar 

  27. Kawada, M., H. Seno, K. Kanda, Y. Nakanishi, R. Akitake, H. Komekado, K. Kawada, Y. Sakai, E. Mizoguchi, and T. Chiba. 2012. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 31: 3111–3123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiangpeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingjing, Z., Nan, Z., Wei, W. et al. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1. Inflammation 40, 995–1005 (2017). https://doi.org/10.1007/s10753-017-0543-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0543-3

KEY WORDS

Navigation