Skip to main content

Advertisement

Log in

Isoflurane Postconditioning Inhibits tPA-Induced Matrix Metalloproteinases Activation After Hypoxic Injury via Low-Density Lipoprotein Receptor-Related Protein and Extracellular Signal-Regulated Kinase Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tissue plasminogen activator (tPA) is the only recommended pharmacological treatment for acute ischemic stroke. However, tPA can induce intracerebral hemorrhage by blood–brain barrier breakdown through an increase in matrix metalloproteinases (MMPs). Previously, we showed that isoflurane postconditioning reduced intracranial hemorrhage following tPA treatment after cerebral ischemia. Here, we investigated the mechanism by which isoflurane postconditioning reduces tPA-induced MMP-2 and MMP-9 activation following hypoxia/reoxygenation (H/R) in brain endothelial cells. Mouse brain endothelial cells (bEnd.3) were exposed to 6 h of oxygen-glucose deprivation and 3 h of reoxygenation with tPA. Cells were treated with isoflurane for 1 h of the reoxygenation condition and the effect of isoflurane postconditioning on MMP-2 and MMP-9 activation was assessed. Involvement of low-density lipoprotein receptor-related protein (LRP), which is a receptor for tPA, and the extracellular signal-regulated kinase (ERK) and NF-κB pathway in isoflurane postconditioning was assessed using LRP inhibitor (receptor-associated protein, RAP) and ERK-1/2 inhibitor (PD98059). Isoflurane postconditioning decreased tPA-induced MMP-2 and MMP-9 activation under H/R. tPA treatment under H/R increased expression of LRP and the active form of NF-κB. Isoflurane postconditioning suppressed LRP expression, increased ERK-1/2 activation, and suppressed MMP-2 and MMP-9 activation, comparable to the effect of RAP. Activation of ERK-1/2, inhibition of NF-κB activation, and suppression of MMP-2 and MMP-9 activation by isoflurane postconditioning were abolished with PD98059 treatment. These finding indicate that isoflurane postconditioning inhibits tPA-induced MMP-2 and MMP-9 activation following H/R via the LRP/ERK/NF-κB pathway in bEnd.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3):870–947. doi:10.1161/STR.0b013e318284056a

    Article  PubMed  Google Scholar 

  2. Balami JS, Sutherland BA, Buchan AM (2013) Complications associated with recombinant tissue plasminogen activator therapy for acute ischaemic stroke. CNS Neurol Disord Drug Targets 12(2):155–169

    Article  CAS  PubMed  Google Scholar 

  3. Harston GW, Sutherland BA, Kennedy J, Buchan AM (2010) The contribution of l-arginine to the neurotoxicity of recombinant tissue plasminogen activator following cerebral ischemia: a review of rtPA neurotoxicity. J Cereb Blood Flow Metab 30(11):1804–1816. doi:10.1038/jcbfm.2010.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. doi:10.3389/fneur.2013.00032

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Y, Rosenberg GA (2011) Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42(11):3323–3328. doi:10.1161/strokeaha.110.608257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J (2014) The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci 124(10):707–716. doi:10.3109/00207454.2013.872102

    Article  CAS  PubMed  Google Scholar 

  7. Lee S-R, Guo S-Z, Scannevin RH, Magliaro BC, Rhodes KJ, Wang X, Lo EH (2007) Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neurosci Lett 417(1):1–5. doi:10.1016/j.neulet.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  8. Suna X, Suna J, Liub L, Dinga Z (2013) Isoflurane preconditioning and postconditioning in multiple organs protection. J Biochem Pharmacol Res 1(1):6–14

    Google Scholar 

  9. Yu Q, Wang H, Chen J, Gao Y, Liang W (2010) Neuroprotections and mechanisms of inhalational anesthetics against brain ischemia. Front Biosci 2:1275–1298

    Google Scholar 

  10. Wang S, Yin J, Ge M, Dai Z, Li Y, Si J, Ma K, Li L, Yao S (2016) Transforming growth-beta 1 contributes to isoflurane postconditioning against cerebral ischemia-reperfusion injury by regulating the c-Jun N-terminal kinase signaling pathway. Biomed Pharmacother 78:280–290. doi:10.1016/j.biopha.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  11. Zhao P, Ji G, Xue H, Yu W, Zhao X, Ding M, Yang Y, Zuo Z (2014) Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience 280:193–203. doi:10.1016/j.neuroscience.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Yin J, Li L, Deng J, Feng C, Zuo Z (2013) Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis 54:216–224. doi:10.1016/j.nbd.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin D, Li G, Zuo Z (2011) Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3beta in human neuron-like cells. Neuroscience 179:73–79. doi:10.1016/j.neuroscience.2011.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Lekic T, Fathali N, Ostrowski RP, Martin RD, Tang J, Zhang JH (2010) Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke 41(7):1521–1527. doi:10.1161/STROKEAHA.110.583757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim EJ, Kim SY, Lee JH, Kim JM, Kim JS, Byun JI, Koo BN (2015) Effect of isoflurane post-treatment on tPA-exaggerated brain injury in a rat ischemic stroke model. Korean J Anesthesiol 68(3):281–286. doi:10.4097/kjae.2015.68.3.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39(3):219–228. doi:10.1080/07853890701214881

    Article  CAS  PubMed  Google Scholar 

  17. Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 112(10):1533–1540. doi:10.1172/JCI19212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58(11):621–631. doi:10.1080/15216540600957438

    Article  CAS  PubMed  Google Scholar 

  19. Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA (2005) Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology 102(3):606–615

    Article  CAS  PubMed  Google Scholar 

  20. Bickler PE, Zhan X, Fahlman CS (2005) Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 103(3):532–539

    Article  CAS  PubMed  Google Scholar 

  21. Li QF, Zhu YS, Jiang H (2008) Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 1245:26–35. doi:10.1016/j.brainres.2008.09.069

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Jia J, Fu J, Wang H, Ji K, Zang B (2014) [The effects of preconditioning and postconditioning with isoflurane on focal cerebral ischemi/reperfusion injury in rats]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 26 (6):431–435. doi:10.3760/cma.j.issn.2095-4352.2014.06.013

    PubMed  Google Scholar 

  23. Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS (2001) Absence of direct antioxidant effects from volatile anesthetics in primary mixed neuronal-glial cultures. Anesthesiology 94(2):303–312

    Article  CAS  PubMed  Google Scholar 

  24. Won S, Lee JH, Wali B, Stein DG, Sayeed I (2014) Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab 34(1):72–80. doi:10.1038/jcbfm.2013.163

    Article  CAS  PubMed  Google Scholar 

  25. Huang Z, Lee H, Lee E, Kang SK, Nam JM, Lee M (2011) Responsive nematic gels from the self-assembly of aqueous nanofibres. Nat Commun 2:459. doi:10.1038/ncomms1465

    Article  PubMed  Google Scholar 

  26. Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N, Grimbergen J, Peters E, Koolwijk P, van Hinsbergh VW (2003) Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 101(5):1810–1817. doi:10.1182/blood-2002-05-1593

    Article  CAS  PubMed  Google Scholar 

  27. Godfrey KR, Tanswell P, Bates RA, Chappell MJ, Madden FN (1998) Nonlinear pharmacokinetics of tissue-type plasminogen activator in three animal species: a comparison of mathematical models. Biopharm Drug Dispos 19(2):131–140

    Article  CAS  PubMed  Google Scholar 

  28. Won S, Lee JK, Stein DG (2015) Recombinant tissue plasminogen activator promotes, and progesterone attenuates, microglia/macrophage M1 polarization and recruitment of microglia after MCAO stroke in rats. Brain Behav Immun 49:267–279. doi:10.1016/j.bbi.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Wang XY, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, Lo EH (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9(10):1313–1317. doi:10.1038/nm926

    Article  CAS  PubMed  Google Scholar 

  30. Golab P, Kielbus M, Bielewicz J, Kurzepa J (2015) The effect of recombinant tissue plasminogen activator on MMP-2 and MMP-9 activities in vitro. Neurol Res 37(1):9–13. doi:10.1179/1743132814Y.0000000412

    Article  CAS  PubMed  Google Scholar 

  31. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38(3):967–973. doi:10.1161/01.str.0000258112.14918.24

    Article  PubMed  Google Scholar 

  32. Suzuki Y, Nagai N, Yamakawa K, Kawakami J, Lijnen HR, Umemura K (2009) Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood 114(15):3352–3358. doi:10.1182/blood-2009-02-203919

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, An J, Haile WB, Echeverry R, Strickland DK, Yepes M (2009) Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab 29(12):1946–1954. doi:10.1038/jcbfm.2009.174

    Article  CAS  PubMed  Google Scholar 

  34. Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y (2006) Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 281(4):2120–2127. doi:10.1074/jbc.M504988200

    Article  CAS  PubMed  Google Scholar 

  35. Adya R, Tan BK, Chen J, Randeva HS (2008) Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation. Diabetes Care 31(4):758–760. doi:10.2337/dc07-1544

    Article  CAS  PubMed  Google Scholar 

  36. Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37(7):1568–1577. doi:10.1007/s11064-012-0752-y

    Article  CAS  PubMed  Google Scholar 

  37. Kovalska M, Kovalska L, Mikuskova K, Adamkov M, Tatarkova Z, Lehotsky J (2014) p-ERK involvement in the neuroprotection exerted by ischemic preconditioning in rat hippocampus subjected to four vessel occlusion. J Physiol Pharmacol 65(6):767–776

    CAS  PubMed  Google Scholar 

  38. Zhang QG, Wang RM, Han D, Yang LC, Li J, Brann DW (2009) Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci Res 63(3):205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franks NP, Lieb WR (1996) Temperature dependence of the potency of volatile general anesthetics: implications for in vitro experiments. Anesthesiology 84(3):716–720

    Article  CAS  PubMed  Google Scholar 

  40. Rahman NA, Rasil AN, Meyding-Lamade U, Craemer EM, Diah S, Tuah AA, Muharram SH (2016) Immortalized endothelial cell lines for in vitro blood-brain barrier models: a systematic review. Brain Res 1642:532–545. doi:10.1016/j.brainres.2016.04.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the “Dongwha Holdings” Faculty Research Assistance Program of Yonsei University College of Medicine for 6-2014-0058 to So Yeon Kim, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A2A01007289) to Bon-Nyeo Koo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon-Nyeo Koo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Cheon, S.Y., Kim, E.J. et al. Isoflurane Postconditioning Inhibits tPA-Induced Matrix Metalloproteinases Activation After Hypoxic Injury via Low-Density Lipoprotein Receptor-Related Protein and Extracellular Signal-Regulated Kinase Pathway. Neurochem Res 42, 1533–1542 (2017). https://doi.org/10.1007/s11064-017-2211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2211-2

Keywords

Navigation