Skip to main content
Log in

Minimal rays on closed surfaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given an arbitrary Riemannian metric on a closed surface, we consider length-minimizing geodesics in the universal cover. Morse and Hedlund proved that such minimal geodesics lie in bounded distance of geodesics of a Riemannian metric of constant curvature. Knieper asked when two minimal geodesics in bounded distance of a single constant-curvature geodesic can intersect. In this paper we prove an asymptotic property of minimal rays, showing in particular that intersecting minimal geodesics as above can only occur as heteroclinic connections between pairs of homotopic closed minimal geodesics. A further application characterizes the boundary at infinity of the universal cover defined by Busemann functions. A third application shows that flat strips in the universal cover of a nonpositively curved surface are foliated by lifts of closed geodesics of a single homotopy class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ballmann, Lectures on Spaces of Nonpositive Curvature. With an appendix by Misha Brin, DMV Seminar, Vol. 25, Birkhäuser Verlag, Basel, 1995.

    Book  MATH  Google Scholar 

  2. V. Bangert, Mather sets for twist maps and geodesics on tori, in Dynamics Reported, Vol. 1, Wiley, Chichester, 1988, pp. 1–56.

    Chapter  Google Scholar 

  3. D. D.-W. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, Vol. 200, Springer Verlag, New York, 2000.

    Book  MATH  Google Scholar 

  4. M. L. Bialy and L. V. Polterovich, Geodesic flows on the two-dimensional torus and phase transitions ‘commensurability-noncommensurability’ (English translation), Functional Analysis and its Applications 20 (1986), 260–266.

    Article  MATH  Google Scholar 

  5. M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  6. G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Ma˜né’s critical values, Geometric and Functional Analysis 8 (1998), 788–809.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Coudéne and B. Schapira, Generic measures for geodesic flows in non-positively curved manifolds, Journal de l’École Polythechnique 1 (2014), 387–408.

    Article  MATH  Google Scholar 

  8. M. J. Dias Carneiro and R. O. Ruggiero, On Birkhoff Theorems for Lagrangian invariant tori with closed orbits, Manuscripta Mathematica 119 (2006), 411–432.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Eberlein and B. O’Neill, Visibility manifolds, Pacific Journal of Mathematics 46 (1973), 45–109.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Cambridge University Press, to appear.

  11. E. Glasmachers, G. Knieper, C. Ogouyandjou and J. P. Schröder, Topological entropy of minimal geodesics and volume growth on surfaces, Journal of Modern Dynamics 8 (2014), 75–91.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gromov, Hyperbolic manifolds, groups and actions, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Annals of Mathematics Studies, Vol. 97, Princeton University Press, Princeton, NJ, 1981, pp. 183–213.

    Google Scholar 

  13. G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Annals of Mathematics 33 (1932), 719–739.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Hopf, Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences of the United States of America 34 (1948), 47–51.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Klingenberg, Geodätischer Fluß auf Mannigfaltigkeiten vom hyperbolischen Typ, Inventiones Mathematicae 14 (1971), 63–82.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Massart and A. Sorrentino, Differentiability of Mather’s average action and integrability on closed surfaces, Nonlinearity 24 (2011), 1777–1793.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. N. Mather, Action minimizing measures for positive definite Lagrangian systems, Mathematische Zeitschrift 207 (1991), 169–207.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Transactions of the American Mathematical Society 26 (1924), 25–60.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. P. Schröder, Global minimizers for Tonelli Lagrangians on the 2-torus, Journal of Topology and Analysis 7 (2015), 261–291.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. P. Schröder, Ergodicity and topological entropy of geodesic flows on surfaces, Journal of Modern Dynamics 9 (2015), 147–167.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. P. Schröder, Invariant tori and topological entropy in Tonelli Lagrangian systems on the 2-torus, Ergodic Theory and Dynamical Systems 36 (2016), 1989–2014.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. P. Schröder, Generic uniqueness of shortest closed geodesics, Calculus of Variations and Partial Differential Equations 55 (2016), Article 55.

    MATH  Google Scholar 

  23. E. M. Zaustinsky, Extremals on compact E-surfaces, Transactions of the American Mathematical Society 102 (1962), 433–445.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Schröder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, J.P. Minimal rays on closed surfaces. Isr. J. Math. 217, 197–229 (2017). https://doi.org/10.1007/s11856-017-1443-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1443-9

Navigation