Skip to main content
Log in

Estimates of eigenvalues of the Laplacian by a reduced number of subsets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Chung–Grigor’yan–Yau’s inequality describes upper bounds of eigenvalues of the Laplacian in terms of subsets (“input”) and their volumes. In this paper we will show that we can reduce “input” in Chung–Grigor’yan–Yau’s inequality in the setting of Alexandrov spaces satisfying CD(0,∞). We will also discuss a related conjecture for some universal inequality among eigenvalues of the Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Amir and V. D. Milman, Unconditional and symmetric sets in n-dimensional normed spaces, Israel J. Math. 37 (1980), 3–20.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 2001.

    Book  MATH  Google Scholar 

  3. J. Bertrand, Existence and uniqueness of optimal maps on Alexandrov spaces, Adv. Math. 219 (2008), 838–851.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Burago, M. Gromov and G. Perel’man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), 3–51, 222.

    MathSciNet  MATH  Google Scholar 

  5. P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-Interscience Publication.

    Book  MATH  Google Scholar 

  6. D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, ARiemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 613–635.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. R. K. Chung, A. Grigor’yan and S.-T. Yau, Upper bounds for eigenvalues of the discrete and continuous Laplace operators, Adv. Math. 117 (1996), 165–178.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. R. K. Chung, A. Grigor’yan and S.-T. Yau, Eigenvalues and diameters for manifolds and graphs, in Tsing Hua lectures on geometry & analysis (Hsinchu, 1990–1991), Int. Press, Cambridge, MA, 1997, pp. 79–105.

    Google Scholar 

  10. I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, Vol. 115, Academic Press, Inc., Orlando, FL, 1984, Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.

    MATH  Google Scholar 

  11. Q.-M. Cheng and H. Yang, Estimates on eigenvalues of Laplacian, Math. Ann. 331 (2005), 445–460.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Funano and T. Shioya, Concentration, Ricci curvature, and eigenvalues of Laplacian, Geom. Funct. Anal. 23 (2013), 888–936.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Funano, Eigenvalues of laplacian and multi-way isoperimetric constants on weighted riemannian manifolds.

  14. M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983), 843–854.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, Vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999, Based on the 1981 French original [MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.

    MATH  Google Scholar 

  16. N. Gozlan, C. Roberto and P.-M. Samson, From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal. 260 (2011), 1491–1522.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. C. Kwok, L. C. Lau, Y. T. Lee, S. Oveis Gharan and L. Trevisan, Improved Cheeger’s inequality: analysis of spectral partitioning algorithms through higher order spectral gap, in STOC’13—Proceedings of the 2013 ACM Symposium on Theory of Computing, ACM, New York, 2013, pp. 11–20.

    Google Scholar 

  18. K. Kuwae, Y. Machigashira and T. Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), 269–316.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, Tohoku Math. J. (2) 63 (2011), 59–76.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, Vol. 89, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  21. P. Lévy, Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, Gauthier-Villars, Paris, 1951, 2d ed.

    MATH  Google Scholar 

  22. P. Li, Eigenvalue estimates on homogeneous manifolds, Comment. Math. Helv. 55 (1980), 347–363.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Liu, An optimal dimension-free upper bound for eigenvalue ratios.

  24. J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), 903–991.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), 589–608.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), 28–37.

    MathSciNet  Google Scholar 

  27. E. Milman, On the role of convexity in isoperimetry, spectral gap and concentration, Invent. Math. 177 (2009), 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Milman, Isoperimetric and concentration inequalities: equivalence under curvature lower bound, Duke Math. J. 154 (2010), 207–239.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Milman, Isoperimetric bounds on convex manifolds, in Concentration, functional inequalities and isoperimetry, Contemp. Math., Vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 195–208.

    Chapter  Google Scholar 

  30. A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math. 4 (2011), 53–64.

    MathSciNet  MATH  Google Scholar 

  31. K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), 275–312.

    MathSciNet  MATH  Google Scholar 

  32. K.-T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl. (9) 84 (2005), 149–168.

    Article  MathSciNet  MATH  Google Scholar 

  33. K.-T. Sturm, On the geometry of metric measure spaces. I, ActaMath. 196 (2006), 65–131.

    MathSciNet  MATH  Google Scholar 

  34. K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), 133–177.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  36. C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 338, Springer-Verlag, Berlin, 2009, Old and new.

    Book  MATH  Google Scholar 

  37. M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923–940.

    Article  MathSciNet  MATH  Google Scholar 

  38. H.-C. Zhang and X.-P. Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), 503–553.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Funano.

Additional information

Supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funano, K. Estimates of eigenvalues of the Laplacian by a reduced number of subsets. Isr. J. Math. 217, 413–433 (2017). https://doi.org/10.1007/s11856-017-1453-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1453-7

Navigation