Skip to main content
Log in

Three Types of A11 Neurons Project to the Rat Spinal Cord

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The A11 dopaminergic cell group is the only group among the A8–A16 dopaminergic cell groups that includes neurons innervating the spinal cord, and a decrease in dopaminergic transmission at the spinal cord is thought to contribute to the pathogenesis of restless legs syndrome. However, the mechanisms regulating the neuronal activity of A11 dopaminergic neurons remain to be elucidated. Unraveling the neuronal composition, distribution and connectivity of A11 neurons would provide insights into the mechanisms regulating the spinal dopaminergic system. To address this, we performed immunohistochemistry for calcium-binding proteins such as calbindin (Calb) and parvalbumin (PV), in combination with the retrograde tracer Fluorogold (FG) injected into the spinal cord. Immunohistochemistry for Calb, PV, or tyrosine hydroxylase (TH), a marker for dopaminergic neurons, revealed that there were at least three types of neurons in the A11 region: neurons expressing Calb, TH, or both TH and Calb, whereas there were no PV-immunoreactive (IR) cell bodies. Both Calb- and PV-IR processes were found throughout the entire A11 region, extending in varied directions depending on the level relative to bregma. We found retrogradely labeled FG-positive neurons expressing TH, Calb, or both TH and Calb, as well as FG-positive neurons lacking both TH and Calb. These findings indicate that the A11 region is composed of a variety of neurons that are distinct in their neurochemical properties, and suggest that the diencephalospinal dopamine system may be regulated at the A11region by both Calb-IR and PV-IR processes, and at the terminal region of the spinal cord by Calb-IR processes derived from the A11 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  Google Scholar 

  2. Skagerberg G, Lindvall O (1985) Organization of diencephalic dopamine neurons projecting to the spinal cord in the rat. Brain Res 342(2):340–351

    Article  CAS  PubMed  Google Scholar 

  3. Thorpe AJ, Clair A, Hochman S, Clemens S (2011) Possible sites of therapeutic action in restless legs syndrome: focus on dopamine and α2δ ligands. Eur Neurol 66(1):18–29

    Article  PubMed  Google Scholar 

  4. Charbit AR, Akerman S, Holland PR, Goadsby PJ (2009) Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 29(40):12532–12541

    Article  CAS  PubMed  Google Scholar 

  5. Koblinger K, Füzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ (2014) Characterization of A11 neurons projecting to the spinal cord of mice. PLoS ONE 9(10):e109636

    Article  PubMed  PubMed Central  Google Scholar 

  6. van den Pol AN (1986) Tyrosine hydroxylase immunoreactive neurons throughout the hypothalamus receive glutamate decarboxylase immunoreactive synapses: a double pre-embedding immunocytochemical study with particulate silver and HRP. J Neurosci 6(3):877–891

    PubMed  Google Scholar 

  7. Pappas SS, Tiernan CT, Behrouz B, Jordan CL, Breedlove SM, Goudreau JL et al (2010) Neonatal androgen-dependent sex differences in lumbar spinal cord dopamine concentrations and the number of A11 diencephalospinal dopamine neurons. J Comp Neurol 518(13):2423–2436

    CAS  PubMed  Google Scholar 

  8. Abdallah K, Monconduit L, Artola A, Luccarini P, Dallel R (2015) GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia. Pain 156(4):644–655

    Article  CAS  PubMed  Google Scholar 

  9. Rogers JH (1992) Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 587(2):203–210

    Article  CAS  PubMed  Google Scholar 

  10. González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421(1):107–135

    Article  PubMed  Google Scholar 

  11. Olson VG, Nestler EJ (2007) Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synapse 61(2):87–95

    Article  CAS  PubMed  Google Scholar 

  12. Arai R, Jacobowitz DM, Deura S (1994) Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Res Bull 33(5):595–614

    Article  CAS  PubMed  Google Scholar 

  13. Gerfen CR, Baimbridge KG, Thibault J (1987) The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 7(12):3935–3944

    CAS  PubMed  Google Scholar 

  14. Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7(12):3915–3934

    CAS  PubMed  Google Scholar 

  15. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475

    Article  CAS  PubMed  Google Scholar 

  16. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press/Elsevier, Boston.

    Google Scholar 

  17. Carr DB, Sesack SR (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38(2):114–123

    Article  CAS  PubMed  Google Scholar 

  18. Gorelova N, Mulholland PJ, Chandler LJ, Seamans JK (2012) The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex 22(2):327–336

    Article  PubMed  Google Scholar 

  19. Kawano M, Kawasaki A, Sakata-Haga H, Fukui Y, Kawano H, Nogami H et al (2006) Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J Comp Neurol 498(5):581–592

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Qi J, Yamaguchi T, Wang HL, Morales M (2013) Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct Funct 218 (5):1159–1176

    Article  CAS  PubMed  Google Scholar 

  21. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152(4):1024–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsumori T, Qin Y, Yokota S, Niu JG, Yasui Y (2010) Central amygdaloid axon terminals are in contact with retrorubral field neurons that project to the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res 1306:18–28

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25(1):106–118

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31(23):8476–8490

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi T, Wang HL, Morales M (2013) Glutamate neurons in the substantia nigra compacta and retrorubral field. Eur J Neurosci 38(11):3602–3610

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamaguchi T, Qi J, Wang HL, Zhang S, Morales M (2015) Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci 41(6):760–772

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22(4):1290–1302

    CAS  PubMed  Google Scholar 

  28. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29(2):340–358

    Article  PubMed  Google Scholar 

  29. Martinez-Gonzalez C, Wang HL, Micklem BR, Bolam JP, Mena-Segovia J (2012) Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 35(5):723–734

    Article  PubMed  Google Scholar 

  30. Frassoni C, Spreafico R, Bentivoglio M (1997) Glutamate, aspartate and co-localization with calbindin in the medial thalamus. An immunohistochemical study in the rat. Exp Brain Res 115(1):95–104

    Article  CAS  PubMed  Google Scholar 

  31. Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345(6196):1255263

    Article  PubMed  Google Scholar 

  32. Kosaka T, Kosaka K, Hataguchi Y, Nagatsu I, Wu JY, Ottersen OP et al (1987) Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp Brain Res 66(1):191–210

    Article  CAS  PubMed  Google Scholar 

  33. Moriizumi T, Hattori T (1992) Anatomical and functional compartmentalization of the subparafascicular thalamic nucleus in the rat. Exp Brain Res 90(1):175–179

    Article  CAS  PubMed  Google Scholar 

  34. Pappas SS, Kennedy T, Goudreau JL, Lookingland KJ (2011) Opioid-mediated regulation of A11 diencephalospinal dopamine neurons: pharmacological evidence of activation by morphine. Neuropharmacol 61 (4):614–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Dokkyo Medical University. H.O. is the recipient of a Young Investigator award (No. 2015-21) from Dokkyo Medical University. We would like to thank Shukuko Nihei for excellent technical assistance.

Funding

This study was funded by a Young Investigator Award (Grant No. 2015-21 for H.O.) from Dokkyo Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Ueda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Hidechika Ozawa and Tsuyoshi Yamaguchi have contributed equally to do this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Supplementary material 2 (TIF 13266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozawa, H., Yamaguchi, T., Hamaguchi, S. et al. Three Types of A11 Neurons Project to the Rat Spinal Cord. Neurochem Res 42, 2142–2153 (2017). https://doi.org/10.1007/s11064-017-2219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2219-7

Keywords

Navigation