Skip to main content
Log in

Unitarity and Discrete Scale Invariance

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

While the complexity of some many-body systems may stem from a profusion of distinct scales, as we approach two-body unitarity (through experimental control or as a theoretical limit) rich structures exist even though there is no more than one essential scale. I comment, from the point of view of effective field theory, on some current problems in the transition from few to many bodies in bosonic and multi-state fermion systems, where order emerges from the discrete scale invariance associated with a single, contact three-body force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999). [arXiv:nucl-th/9809025]

    Article  ADS  Google Scholar 

  2. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999). [arXiv:nucl-th/9811046]

    Article  ADS  Google Scholar 

  3. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000). [arXiv:nucl-th/9906032]

    Article  ADS  Google Scholar 

  4. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  5. T. Kraemer et al., Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  6. B. Huang et al., Phys. Rev. Lett. 112, 190401 (2014)

    Article  ADS  Google Scholar 

  7. W. Schöllkopf, J.P. Toennies, J. Chem. Phys. 104, 1155 (1996)

    Article  ADS  Google Scholar 

  8. M. Kunitski et al., Science 348, 551 (2015). [arXiv:1512.02036 [physics.atm-clus]]

    Article  ADS  Google Scholar 

  9. J. von Stecher, J. Phys. B 43, 101002 (2010)

    Article  ADS  Google Scholar 

  10. A.N. Nicholson, Phys. Rev. Lett. 109, 073003 (2012). [arXiv:1202.4402 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  11. B. Bazak, M. Eliyahu, U. van Kolck, Phys. Rev. A 94, 052502 (2016). [arXiv:1607.01509 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  12. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Rev. Lett. 83, 931 (1999). [arXiv:hep-ph/9902370]

    Article  ADS  Google Scholar 

  13. J. Vanasse, D.R. Phillips, Few Body Syst. 58, 26 (2017). [arXiv:1607.08585 [nucl-th]]

    Article  ADS  Google Scholar 

  14. P.F. Bedaque, U. van Kolck, Phys. Lett. B 428, 221 (1998). [arXiv:nucl-th/9710073]

    Article  ADS  Google Scholar 

  15. U. van Kolck, Lect. Notes Phys. 513, 62 (1998). [arXiv:hep-ph/9711222]

    Article  ADS  Google Scholar 

  16. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. C 58, R641 (1998). [arXiv:nucl-th/9802057]

    Article  ADS  Google Scholar 

  17. U. van Kolck, Nucl. Phys. A 645, 273 (1999). [arXiv:nucl-th/9808007]

    Article  ADS  Google Scholar 

  18. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    Article  ADS  Google Scholar 

  19. E. Fermi, Ric. Sci. 7, 13 (1936)

    Google Scholar 

  20. H.A. Bethe, R. Peierls, Proc. R. Soc. Lond. A 148, 146 (1935)

    Article  ADS  Google Scholar 

  21. H.A. Bethe, R. Peierls, Proc. R. Soc. Lond. A 149, 176 (1935)

    Article  ADS  Google Scholar 

  22. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998). [arXiv:nucl-th/9801034]

    Article  ADS  Google Scholar 

  23. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998). [arXiv:nucl-th/9802075]

    Article  ADS  Google Scholar 

  24. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  25. C.R. Hagen, Phys. Rev. D 5, 377 (1972)

    Article  ADS  Google Scholar 

  26. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Lett. B 474, 145 (2000). [arXiv:hep-th/9910025]

    Article  ADS  MathSciNet  Google Scholar 

  27. B. d’Espagnat, J. Prentki, Nuovo Cim. 3, 1045 (1956)

    Article  ADS  Google Scholar 

  28. A. Bulgac, G.F. Bertsch, Phys. Rev. Lett. 94, 070401 (2005). [arXiv:cond-mat/0404687]

    Article  ADS  Google Scholar 

  29. J. Carlson, S.-Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  Google Scholar 

  30. S.-Y. Chang, V.R. Pandharipande, J. Carlson, K.E. Schmidt, Phys. Rev. A 70, 043602 (2004). [arXiv:physics/0404115 [physics.atom-ph]]

    Article  ADS  Google Scholar 

  31. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)

    Article  ADS  Google Scholar 

  32. D.S. Petrov, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004)

    Article  ADS  Google Scholar 

  33. J. Carlson, S. Gandolfi, K.E. Schmidt, S. Zhang, Phys. Rev. A 84, 061602 (2011). [arXiv:1107.5848 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  34. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016). [arXiv:1508.05085 [nucl-th]]

    Article  ADS  Google Scholar 

  35. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 40, 199 (2009). [arXiv:0812.3653 [nucl-th]]

    Article  ADS  Google Scholar 

  36. L.H. Thomas, Phys. Rev. 47, 903 (1935)

    Article  ADS  Google Scholar 

  37. R.D. Amado, J.V. Noble, Phys. Rev. D 5, 1992 (1972)

    Article  ADS  Google Scholar 

  38. S.K. Adhikari, L. Tomio, Phys. Rev. C 26, 83 (1982)

    Article  ADS  Google Scholar 

  39. A. Vaghani, R. Higa, G. Rupak, U. van Kolck, In preparation

  40. H.-W. Hammer, T. Mehen, Phys. Lett. B 516, 353 (2001). [arXiv:nucl-th/0105072]

    Article  ADS  Google Scholar 

  41. P.F. Bedaque, G. Rupak, H.W. Grießhammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003). [arXiv:nucl-th/0207034]

    Article  ADS  Google Scholar 

  42. L. Platter, C. Ji, D.R. Phillips, Phys. Rev. A 79, 022702 (2009). [arXiv:0808.1230 [cond-mat.other]]

    Article  ADS  Google Scholar 

  43. C. Ji, D.R. Phillips, Few-Body Syst. 54, 2317 (2013). [arXiv:1212.1845 [nucl-th]]

    Article  ADS  Google Scholar 

  44. J. Vanasse, Phys. Rev. C 88, 044001 (2013). [arXiv:1305.0283 [nucl-th]]

    Article  ADS  Google Scholar 

  45. A.C. Phillips, Nucl. Phys. A 107, 209 (1968)

    Article  ADS  Google Scholar 

  46. D. Sornette, Phys. Rept. 297, 239 (1998). [arXiv:cond-mat/9707012 [cond-mat.stat-mech]]

    Article  ADS  MathSciNet  Google Scholar 

  47. E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006). [arXiv:cond-mat/0410417]

    Article  ADS  Google Scholar 

  48. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004). [arXiv:cond-mat/0404313]

    Article  ADS  Google Scholar 

  49. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 607, 254 (2005). [arXiv:nucl-th/0409040]

    Article  ADS  Google Scholar 

  50. H.-W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007). [arXiv:nucl-th/0610105]

    Article  ADS  Google Scholar 

  51. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arXiv:1607.04623 [nucl-th]

  52. J. Kirscher, H.W. Grießhammer, D. Shukla, H.M. Hofmann, Eur. Phys. J. A 44, 239 (2010). [arXiv:0903.5538 [nucl-th]]

    Article  ADS  Google Scholar 

  53. J. Kirscher, N. Barnea, D. Gazit, F. Pederiva, U. van Kolck, Phys. Rev. C 92, 054002 (2015). [arXiv:1506.09048 [nucl-th]]

    Article  ADS  Google Scholar 

  54. L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, arXiv:1701.06516 [nucl-th]

  55. J.A. Tjon, Phys. Lett. B 56, 217 (1975)

    Article  ADS  Google Scholar 

  56. S. Nakaichi, Y. Akaishi, H. Tanaka, T.K. Lim, Phys. Lett. A 68, 36 (1978)

    Article  ADS  Google Scholar 

  57. M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Europhys. Lett. 75, 555 (2006)

    Article  ADS  Google Scholar 

  58. M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Phys. Rev. Lett. 107, 135304 (2011). [arXiv:1101.0378 [physics.atm-clus]]

    Article  ADS  Google Scholar 

  59. M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Phys. Rev. A 85, 023610 (2012). [arXiv:1110.5214 [cond-mat.soft]]

    Article  ADS  Google Scholar 

  60. G.J. Hanna, D. Blume, Phys. Rev. A 74, 063604 (2006)

    Article  ADS  Google Scholar 

  61. J. von Stecher, J.P. D’Incao, C.H. Greene, Nat. Phys. 5, 417 (2009)

    Article  Google Scholar 

  62. J.P. D’Incao, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 103, 033004 (2009)

    Article  ADS  Google Scholar 

  63. A. Deltuva, Phys. Rev. A 82, 040701 (2010). [arXiv:1009.1295 [physics.atm-clus]]

    Article  ADS  Google Scholar 

  64. R. Schmidt, S. Moroz, Phys. Rev. A 81, 052709 (2010). [arXiv:0910.4586 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  65. I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Lett. B 653, 358 (2007). [arXiv:nucl-th/0609023]

    Article  ADS  Google Scholar 

  66. S. Nakaichi, T.K. Lim, Y. Akaishi, H. Tanaka, J. Chem. Phys. 71, 4430 (1979)

    Article  ADS  Google Scholar 

  67. T.K. Lim, S. Nakaichi, Y. Akaishi, H. Tanaka, Phys. Rev. A 22, 28 (1980)

    Article  ADS  Google Scholar 

  68. F. Ferlaino et al., Phys. Rev. Lett. 102, 140401 (2009)

    Article  ADS  Google Scholar 

  69. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 84, 052503 (2011). [arXiv:1106.3853 [physics.atm-clus]]

    Article  ADS  Google Scholar 

  70. J. von Stecher, Phys. Rev. Lett. 107, 200402 (2011). [arXiv:1106.2319 [cond-mat.quant-gas]]

    Article  Google Scholar 

  71. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 86, 042513 (2012). [arXiv:1206.0854 [physics.atm-clus]]

    Article  ADS  Google Scholar 

  72. Y. Horinouchi, M. Ueda, Phys. Rev. A 94, 050702 (2016). [arXiv:1603.05328 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  73. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002). [arXiv:nucl-th/0205063]

    Article  ADS  Google Scholar 

  74. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003). [arXiv:nucl-th/0304007]

    Article  ADS  Google Scholar 

  75. L. Platter, Ph.D. dissertation, University of Bonn (2005)

  76. A. Kievsky, N.K. Timofeyuk, M. Gattobigio, Phys. Rev. A 90, 032504 (2014). [arXiv:1405.2371 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  77. Y. Yan, D. Blume, Phys. Rev. A 92, 033626 (2015)

    Article  ADS  Google Scholar 

  78. M. Gattobigio, A. Kievsky, Phys. Rev. A 90, 012502 (2014). [arXiv:1309.1927 [cond-mat.quant-gas]]

    Article  ADS  Google Scholar 

  79. H.-W. Hammer, D.T. Son, Phys. Rev. Lett. 93, 250408 (2004). [arXiv:cond-mat/0405206]

    Article  ADS  Google Scholar 

  80. S. Piatecki, W. Krauth, Nat. Commun. 5, 3503 (2014)

    Article  ADS  Google Scholar 

  81. D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85, 023620 (2012)

    Article  ADS  Google Scholar 

  82. J.E. Drut, R.J. Furnstahl, L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010). [arXiv:0906.1463 [nucl-th]]

    Article  ADS  Google Scholar 

  83. T.H.R. Skyrme, Nucl. Phys. 9, 615 (1959)

    Article  Google Scholar 

  84. A. Delfino, T. Frederico, V.S. Timóteo, L. Tomio, Phys. Lett. B 634, 185 (2006). [arXiv:0704.0481 [nucl-th]]

    Article  ADS  Google Scholar 

  85. F. Coester, S. Cohen, B. Day, C.M. Vincent, Phys. Rev. C 1, 769 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. van Kolck.

Additional information

This article belongs to the Topical Collection “30th anniversary of Few-Body Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kolck, U. Unitarity and Discrete Scale Invariance. Few-Body Syst 58, 112 (2017). https://doi.org/10.1007/s00601-017-1271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1271-9

Navigation